Abstract
A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose recognition is \({NP}\)-hard. We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph as input and returns a positive or a negative witness for o1p. If a graph \(G\) is o1p, then the algorithm computes an embedding and can augment \(G\) to a maximal o1p graph. Otherwise, \(G\) includes one of six minors, which is detected by the recognition algorithm. Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge contraction nor under subdivision. Several important graph parameters, such as treewidth, colorability, stack number, and queue number, increase by one from outerplanar to o1p graphs. Every o1p graph of size \(n\) has at most \(\frac{5}{2} n - 4\) edges and there are maximal o1p graphs with \(\frac{11}{5} n - \frac{18}{5}\) edges, and these bounds are tight. Finally, every o1p graph has a straight-line grid drawing in \(\fancyscript{O}(n^2)\) area with all vertices in the outer face, a planar visibility representation in \(\fancyscript{O}(n \log n)\) area, and a 3D straight-line drawing in linear volume, and these drawings can be constructed in linear time.
Similar content being viewed by others
Change history
26 September 2021
A Correction to this paper has been published: https://doi.org/10.1007/s00453-021-00874-z
Notes
A short version of the algorithm appeared in [5].
In the rooted version of SPQR-trees the expansion graph \({{\mathrm{\mathrm {expg}}}}(e)\) corresponds to the pertinent graph of \({{\mathrm{\mathrm {refn}}}}(e)\).
References
Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) Graph Grawing, GD 2013, Lecture Notes in Computer Science, vol. 8242, pp. 83–94. Springer, Berlin (2014)
Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging. Ill. J. Math. 21, 429–490 (1977)
Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II. reducibility. Illinois Journal of Mathematics 21, 491–567 (1977)
Arnborg, S., Proskurowski, A.: Linear time algorithms for \(K\)-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23(1), 11–24 (1989)
Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Josef, R.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.) Graph Grawing, GD 2013, Lecture Notes in Computer Science, vol. 8242, pp. 107–118. Springer, Berlin (2014)
Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)
Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F.., Solis-Oba, R., Sack, J.R. (eds.) WADS 2013, pp. 97–108. (2013)
Bernhard, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B 27(3), 320–331 (1979)
Biedl, T.C.: Small drawings of outerplanar graphs, series–parallel graphs, and other planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)
Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abh. aus dem Math. Seminar der Univ. Hamburg, vol. 53, pp. 41–52. (1983)
Bodlaender, H.L.: A linear-time algorithms for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) Graph Grawing, GD 2012, Lecture Notes in Computer Science, vol. 7704, pp. 327–338. Springer, Berlin (2013)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)
Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)
Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. J. Comput. Geom. Appl. 22(6), 543–558 (2012)
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)
Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica 54(1), 25–53 (2009)
Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM J. Comput. 42(6), 2243–2285 (2013)
Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013)
Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34(3), 553–579 (2005)
Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal 1-planarity of graphs with a rotation system in linear time. Theor. Comput. Sci. 513, 65–76 (2013)
Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8), 961–969 (2013)
Eggleton, R.B.: Rectilinear drawings of graphs. Util. Math. 29, 149–172 (1986)
Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Math. 307(7–8), 854–865 (2007)
Frati, F.: Straight-line drawings of outerplanar graphs in \({\fancyscript {O}}\)(dn logn) area. Comput. Geom. 45(9), 524–533 (2012)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) Graph Drawing, GD 2000. Lecture Notes in Computer Science, vol. 1984, pp. 77–90. Springer, Berlin (2001)
Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)
Hliněný, P.: Crossing number is hard for cubic graphs. J. Comb. Theory Ser. B 96(4), 455–471 (2006)
Hong, S.H., Eades, P., Naoki, K., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica (2014). Published online
Hong, S.H., Eades, P., Liotta, G., Poon, S.H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) Computing and Combinatorics Conference, COCOON 2012, Lecture Notes in Computer Science, vol. 7434, pp. 335–346. Springer, Berlin (2012)
Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersion and hardness of 1-planarity testing. J. Graph Theory 72, 30–71 (2013)
Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937)
Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inf. Process. Lett. 9(5), 229–232 (1979)
Pach, J., Tóth, G.: Graphs drawn with a few crossings per edge. Combinatorica 17, 427–439 (1997)
Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der Univ. Hamburg, vol. 29, pp. 107–117 (1965)
Schnyder, W.: Embedding planar graphs on the grid. In: ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–147. SIAM (1990)
Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Comb. Theory Ser. B 29, 244–271 (1980)
Thomassen, C.: Kuratowski’s theorem. J. Graph Theory 5(3), 225–241 (1981)
Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988)
Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Tech. Rep. 298, Department of EECS, Princeton University (1982)
Williamson, S.G.: Depth-first search and Kuratowski subgraphs. J. ACM 31(4), 681–693 (1984)
Acknowledgments
We thank the anonymous referees for their careful reading and useful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) Grant Br835/18-1.
Rights and permissions
About this article
Cite this article
Auer, C., Bachmaier, C., Brandenburg, F.J. et al. Outer 1-Planar Graphs. Algorithmica 74, 1293–1320 (2016). https://doi.org/10.1007/s00453-015-0002-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-015-0002-1