Abstract
We consider graph drawings in which vertices are assigned to layers and edges are drawn as straight line-segments between vertices on adjacent layers. We prove that graphs admitting crossing-free h-layer drawings (for fixed h) have bounded pathwidth. We then use a path decomposition as the basis for a linear-time algorithm to decide if a graph has a crossing-free h-layer drawing (for fixed h). This algorithm is extended to solve related problems, including allowing at most k crossings, or removing at most r edges to leave a crossing-free drawing (for fixed k or r). If the number of crossings or deleted edges is a non-fixed parameter then these problems are NP-complete. For each setting, we can also permit downward drawings of directed graphs and drawings in which edges may span multiple layers, in which case either the total span or the maximum span of edges can be minimized. In contrast to the Sugiyama method for layered graph drawing, our algorithms do not assume a preassignment of the vertices to layers.
Similar content being viewed by others
References
Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)
Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.) Proc. Graph Drawing: 8th Internat. Symp. (GD’00). Lecture Notes in Computer Science, vol. 1984, pp. 229–240. Springer, New York (2001)
Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21, 358–402 (1996)
Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmics 5, 93–109 (1990)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Carpano, M.J.: Automatic display of hierarchized graphs for computer aided decision analysis. IEEE Trans. Syst. Man Cybern. 10(11), 705–715 (1980)
Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines. J. Graph. Algorithms Appl. 8(2), 161–177 (2004)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, New York (1999)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. In: Meyer auf der Heide, F. (ed.) European Symposium on Algorithms, pp. 488–499 (2001)
Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to two-layer planarization. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) Proc. 9th Internat. Symp. on Graph Drawing (GD ’01). Lecture Notes in Computer Science, vol. 2265, pp. 1–15. Springer, New York (2002)
Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to two-layer planarization. Algorithmica 45(2), 159–182 (2006)
Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing minimization revisited. J. Discrete Algorithms (2007). doi:10.1016/j.jda.2006.12.008
Diestel, R.: Graph theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)
Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34(3), 553–579 (2005)
Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica 40(1), 15–31 (2004)
Eades, P., Whitesides, S.: Drawing graphs in two layers. Theor. Comput. Sci. 131(2), 361–374 (1994)
Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994)
Fernau, H.: Two-layer planarization: improving on parameterized algorithmics. J. Graph. Algorithms Appl. 9(2), 205–238 (2005)
Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Methods 4(3), 312–316 (1983)
Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A technique for drawing directed graphs. IEEE Trans. Softw. Eng. 19(3), 214–230 (1993)
Gupta, A., Nishimura, N., Proskurowski, A., Ragde, P.: Embeddings of k-connected graphs of pathwidth k. Discrete Appl. Math. 145(2), 242–265 (2005)
Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst. Sci. 68(2), 285–302 (2004)
Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992)
Kawarabayashi, K., Reed, B.: Computing crossing number in linear time. In: Proc. 39th Annual ACM Symposium on Theory of Computing (STOC ’07), pp. 382–390. ACM Press, New York (2007)
Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York (1990)
Mutzel, P.: Optimization in leveled graphs. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 4, pp. 189–196. Kluwer, Dordrecht (2001)
Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Proc. Internat. Symp. on Graph Drawing (GD ’95). Lecture Notes in Computer Science, vol. 1027, pp. 447–458. Springer, Berlin (1996)
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)
Suderman, M.: Pathwidth and layered drawings of trees. Int. J. Comput. Geom. Appl. 14(3), 203–225 (2004)
Suderman, M., Whitesides, S.: Experiments with the fixed-parameter approach for two-layer planarization. J. Graph. Algorithms Appl. 9(1), 149–163 (2005)
Tomii, N., Kambayashi, Y., Yajima, S.: On planarization algorithms of 2-level graphs. Pap. Tech. Group Electron. Comput. IECEJ 38, 1–12 (1977)
Warfield, J.N.: Crossing theory and hierarchy mapping. IEEE Trans. Syst. Man Cybern. 7(7), 505–523 (1977)
Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bull. Math. Biol. 48(2), 189–195 (1986)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research initiated at the International Workshop on Fixed Parameter Tractability in Graph Drawing, Bellairs Research Institute of McGill University, Holetown, Barbados, Feb. 9–16, 2001, organized by S. Whitesides. Research of Canada-based authors is supported by NSERC; research of Quebec-based authors is also supported by a grant from FCAR. Research of D.R. Wood completed while visiting McGill University. Research of G. Liotta supported by CNR and MURST.
Rights and permissions
About this article
Cite this article
Dujmović, V., Fellows, M.R., Kitching, M. et al. On the Parameterized Complexity of Layered Graph Drawing. Algorithmica 52, 267–292 (2008). https://doi.org/10.1007/s00453-007-9151-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-007-9151-1