Unterstützung von Periodizität in Informationssystemen – Herausforderungen und Lösungsansätze | SICS Software-Intensive Cyber-Physical Systems
Skip to main content

Unterstützung von Periodizität in Informationssystemen – Herausforderungen und Lösungsansätze

  • Reguläre Beiträge
  • Published:
Informatik - Forschung und Entwicklung

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Die systemseitige Unterstützung von Periodizität bzw. periodischen Spezifikationen weist Anforderungen auf, die weit über die temporalen Fähigkeiten heutiger Informationssysteme hinausgehen. Im Allgemeinen charakterisieren periodische Spezifikationen Vorgänge, die aus regelmäßig wiederkehrenden Aktivitäten bestehen. Neben der Ausdrucksstärke ist die größte Herausforderung periodische Spezifikationen miteinander vergleichen zu können. Diese Vergleichbarkeit ist ein wichtiger Aspekt in einer Vielzahl von Anwendungen, etwa um vorausschauend sich eventuell ergebende potentielle Ressourcen- oder Terminkonflikte erkennen zu können. Erschwert wird dieses durch unterschiedliche (zeitliche) Granularitäten sowie Ausnahmen in entsprechenden Spezifikationen. Für den praktischen Einsatz ist es darüber hinaus unumgänglich, periodische Zusammenhänge auch im Kontext einer großen (umfangreichen) Menge periodischer Daten effizient verwalten und auswerten zu können. Der vorliegende Beitrag gibt einen Einblick in die Herausforderungen sowie einen Überblick zu in der aktuellen Literatur vorliegenden Lösungsansätzen einer systemseitigen Unterstützung von periodischen Spezifikationen.

Abstract

The requirements of a system side support of periodicity or rather periodic specifications are far beyond the temporal capabilities of current information systems. Generally, periodic specifications characterize activities, which consist of regularly recurrent elements. Beside the expressiveness, the challenge is the ability to compare periodic specifications among each other. Such comparability is an important issue in many applications. Examples are the identification of (potential) upcoming conflicts between different periodic specifications, like conflicts in resource or time schedules. An aggravating factor here is the use of different temporal granularities as well as the occurrence of exceptions in periodic specifications. In addition, real world scenarios typically have to deal with a high number of periodic specifications. Thus, comparisons between periodic specifications must retain their efficiency also in case of large data sets. This paper provides a detailed overview of the challenges of an integrated support of periodic specifications as well as of the current approaches in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Literatur

  1. Anselma L (2004) Recursive representation of periodicity and temporal reasoning. In: Proc. TIME’04, 11th Int. Symposium on Temporal Representation and Reasoning, Tatihou, France, July 2004, pp 52–59

  2. Bertino E, Bettini C, Ferrari E, Samarati P (1998) An acess control model supporting periodicity constraints and temporal reasoning. IEEE Trans Database Syst 23(3):231–285

    Article  Google Scholar 

  3. Bettini C, Jajodia S, Wang S (2000) Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer-Verlag, Berlin Heidelberg New York

    MATH  Google Scholar 

  4. Bettini C, Mascetti S (2005) An efficient algorithm for minimizing time granularity periodical representations. In: Proc. TIME’05, 12th Int. Symposium on Temporal Representation and Reasoning, Burlington, Vermont, USA, June 2005, pp 20–25

  5. Bettini C, Mascetti S, Sean Wang X (2004) Mapping calendar expressions into periodical granularities. In: Proc. 11th TIME’04, Int. Symposium on Temporal Representation and Reasoning, Tatihou Island ,France, July 2004, pp 96–102

  6. Bettini C, de Sibi R (2000) Symbolic representation of user-defined time granularities. Ann Math Artif Intell 30(1–4):53–92

    Article  MATH  MathSciNet  Google Scholar 

  7. Bresolin D, Montanari A, Puppis G (2004) Time granularities and ultimately periodic automata. In: Proc. JELIA 2004, 9th European Conference on Logics in Artificial Intelligence, volume LNAI 3229, Lisbon, Portugal, September 2004, pp 513–525

  8. Casati F, Ceri S, Paraboschi S, Pozzi G (1999) Database Support for Workflow Management: The WIDE Project, chapter 7. Kluwer Academic Publishers, Boston, pp 141–168

    Google Scholar 

  9. Chandra R, Segev A, Stonebraker M (1994) Implementing calendars and temporal rules in next generation databases. In: Proc. Int’l Conf. on Data Engineering, Houston, USA, February 1994, pp 264–273

  10. Combi C, Franceschet M, Peron A (2002) A logical approach to represent and reason about calendars. In: Proc. TIME’02, 9th Intl. Symposium on Temporal Representation and Reasoning, Manchester, UK, July 2002, pp 134–140

  11. Combi C, Franceschet M, Peron A (2004) Representing and reasoning about temporal granularities. J Logic Comput 4(1):51–77

    Article  MathSciNet  Google Scholar 

  12. Cukierman D, Delgrande J (1998) Expressing time intervals and repetition within a formalization of calendars. J Comput Intell 14(4):563–597

    Article  MathSciNet  Google Scholar 

  13. Cukierman D, Delgrande J (2000) A formalization of structured temporal objects and repetition. In: Proc. TIME 2000, 7th Int’l Workshop on Temporal Reasoning and Representation, Cape Breton, Canada, July 2000, pp 83–87

  14. Cukierman D, Delgrande J (2004) The sql time theory: A formalization of structured temporal objects and repetition. In: Proc. 11th TIME’04, Int. Symposium on Temporal Representation and Reasoning, Tatihou, France, July 2004, pp 28–35

  15. Dal Lago U, Montanari A (2001) Calendars, time granularities, and automata. In: Proc. SSTD 2001, 7th Int. Symposium on Spatial and Temporal Databases, volume LNCS 2121, Los Angeles, US, July 2001, pp 279–298

  16. Dal Lago U, Montanari A, Puppis G (2003) Towards compact and tractable automaton-based representation of time granularity. In: Proc. ICTCS’03, 8th Italien Conference on Theoretical Computer Science, volume LNCS 2841, Bertinoro, Italia, October 2003, pp 72–85

  17. Demri S (2004) LTL over Integer Periodicity Constraints (extended abstract). In: Proc. of 7th Int. Conf. on Foundations of Software Science and Computation Structures (FOSSACS), volume 2987 of LNCS, Barcelona, Spain, March 2004, pp 121–135

  18. Egidi L, Terenziani P (2004) A lattice of classes of user-defined symbolic periodicities. In: Proc. TIME’04, 11th Int. Symposium on Temporal Representation and Reasoning, Tatihou, France, July 2004, pp 13–20

  19. Egidi L, Terenziani P (2004) A mathematical framework for the semantics of symbolic languages representing periodic time. In: Proc. TIME’04, 11th Int. Symposium on Temporal Representation and Reasoning, Tatihou, France, July 2004, pp 21–27

  20. Kabanza F, Stévenne J-M, Wolper P (1990) Handling infinite temporal data. In: Proc. 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Nashville, US, April 1990, pp 392–403

  21. Kabanza F, Stévenne J-M, Wolper P (1995) Handling infinite temporal data. J Comput Syst Sci 51(1):3–17

    Article  MATH  Google Scholar 

  22. Leban B, McDonald D, Forster D (1986) A representation for collections of temporal intervals. In Proc. 5th National Conference on Artificial Intelligence, Philadelphia, US, August 1986, pp 367–371

  23. Montanari A, Peron A, Policriti A (1999) Decidable theories of omega-layered metric temporal structures. Log J IGPL 7(1):79–102

    Article  MATH  MathSciNet  Google Scholar 

  24. Niezette M, Stevenne J (1992) An efficient symbolic representation of periodic time. In: Proc. First Int. Conference on Information and Knowledge Management, Baltimore, US, November 1992, pp 161–168

  25. Ning P, Wang XS, Jajodia S (2002) An algebraic representation of calendars. Ann Math Artif Intell 36(1–2):5–38

    Article  MATH  MathSciNet  Google Scholar 

  26. Ohlbach HJ (2004) The role of labeled partitionings for modeling periodic temporal notions. In: Proc. TIME’04, 11th Int. Symposium on Temporal Representation and Reasoning, Tatihou, France, July 2004, pp 60–63

  27. Terenziani P (1997) Integrating calendar dates and qualitative temporal constraints in the treatment of periodic events. IEEE Trans Knowl Data Eng 9(5):763–783

    Article  Google Scholar 

  28. Terenziani P (2002) Temporal reasoning with class and instances of events. In: Proc. TIME’02, 9th Int’l Symp. on Temporal Representation and Reasoning, Manchester, UK, July 2002, pp 100–107

  29. Terenziani P (2003) Symbolic user-defined periodicity in temporal relational databases. IEEE Trans Knowl Data Eng 15(2):489–509

    Article  Google Scholar 

  30. Terenziani P, Anselma L (2006) Temporal reasoning about composite and/or periodic events. J Exp Theor Artif Intell 18(1):87–115

    Article  Google Scholar 

  31. Terenziani P, Carlini C, Montani S (2002) Towards a comprehensive treatment of temporal constraints in clinical guidelines. In: Proc. TIME’02, 9th Intl. Symposium on Temporal Representation and Reasoning, Manchester, UK, July 2002, pp 20–27

  32. Terenziani P, Anselma L, Montani S (2005) Periodicity-based temporal constraints. In AI*IA 2005: Advances in Artificial Intelligence 9th Congress of the Italian Association for Artificial Intelligence, number 3673 in LNCS, Milan, Italy, September 2005, pp 62–65

  33. Toman D, Chomicki J, Rogers DS (1994) Datalog with integer periodicity constraints. In: Proc. of the 1994 Int. Symposium Logic Programming, Melbourne, Australia, November 1994, pp 189–203

  34. Tuzhilin A, Clifford J (1995) On periodicity in temporal databases. Inf Syst 20(8):619–639

    Article  Google Scholar 

  35. Vardi MY (1988) A temporal fixpoint calculus. In: Conference Record of the Conference on Principles of Programming Languages, San Diego, California, United States, January 1988, pp 250–259

  36. Wijsen J (2000) A string-based model for infinite granularities. In: Proc. of the AAAI-2000 Workshop on Spatial and Temporal Granularity, Austin, US, July 2000, pp 9–16

  37. Wolper P (1983) Temporal logic can be more expressive. Inf Control 56(1/2):72–99

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dadam.

Additional information

CR subject classification

A.1 ; H.1 ; H.3 ; I.1 ; I.2.4 ; F.4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalb, M., Dadam, P. Unterstützung von Periodizität in Informationssystemen – Herausforderungen und Lösungsansätze . Informatik Forsch. Entw. 22, 109–125 (2008). https://doi.org/10.1007/s00450-008-0039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-008-0039-3

Schlagworte

Keywords