A columnar model of somatosensory reorganizational plasticity based on Hebbian and non-Hebbian learning rules | Biological Cybernetics
Skip to main content

A columnar model of somatosensory reorganizational plasticity based on Hebbian and non-Hebbian learning rules

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Topographical and functional aspects of neuronal plasticity were studied in the primary somatosensory cortex of adult rats in acute electrophysiological experiments. Under these experimental conditions, we observed short-term reversible reorganization induced by intracortical microstimulation or by an associative pairing of peripheral tactile stimulation. Both types of stimulation generate large-scale and reversible changes of the representational topography and of single cell functional properties. We present a model to simulate the spatial and functional reorganizational aspects of this type of short-term and reversible plasticity. The columnar structure of the network architecture is described and discussed from a biological point of view. The simulated architecture contains three main levels of information processing. The first one is a sensor array corresponding to the sensory surface of the hind paw. The second level, a pre-cortical relay cell array, represents the thalamo-cortical projection with different levels of excitatory and inhibitory relay cells and inhibitory nuclei. The array of cortical columns, the third level, represents stellate, double bouquet, basket and pyramidal cell interactions. The dynamics of the network are ruled by two integro-differential equations of the lateral-inhibition type. In order to implement neuronal plasticity, synaptic weight parameters in those equations are variables. The learning rules are motivated by the original concept of Hebb, but include a combination of both Hebbian and non-Hebbian rules, which modifies different intra- and inter-columnar interactions. We discuss the implications of neuronal plasticity from a behavioral point of view in terms of information processing and computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge pp 81–91

    Google Scholar 

  2. Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257:1412–1415

    Google Scholar 

  3. Alkon DL, Blackwell KT, Barbour GS, Werness SA, Vogl TP (1994) Biological plausibility of synaptic associative memory models. Neurol Networks: 7:1005–1017

    Google Scholar 

  4. Alonso A, Curtis M de, Llinas R (1990) Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. Proc Natl Acad Sci USA 87: 9280–9284

    Google Scholar 

  5. Andres M, Schlüter O, Spengler F, Dinse HR (1994) A model of fast and reversible representational plasticity using Kohonen mapping. In: Marinaro M, Morasso PG (ed) Proc Int Conf on Artificial Neurol Networks ICANN'94. Springer, Berlin Heidelberg New York, pp 306–309

    Google Scholar 

  6. Antonini A, Stryker MP (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260: 1819–1821

    Google Scholar 

  7. Armstrong-James M (1975) The functional status and cortical organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex SI. J Physiol (Lond) 246: 501–538

    Google Scholar 

  8. Baldi P, Heiligenberg W (1988) How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol Cybern 59: 313–318

    Google Scholar 

  9. Bedenbaugh PH, Maldonado PE, Gerstein GL (1992) Comparative plasticity of somatosensory and auditory cortex in rat. Soc Neurosci Abstr 18: 346

    Google Scholar 

  10. Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8: 3–11

    Google Scholar 

  11. Burnod Y (1988) An adaptive neural network: the cerebral cortex. Masson, Paris

    Google Scholar 

  12. Chapin JK, Lin CS (1992) The somatic sensory cortex of the rat. In: Kolb B, Tees R (ed) The cerebral cortex of the rat. MIT Press, Cambridge, Mass, pp 341–380

    Google Scholar 

  13. Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368: 737–740

    Google Scholar 

  14. Dinse HR, Recanzone G, Merzenich MM (1990) Direct observation of neural assemblies during neocortical representational reorganization. In: Eckmiller R, Hartmann G, Hauske G (ed) Parallel processing in neural systems and computers. Elsevier, Amsterdam, pp 65–70

    Google Scholar 

  15. Dinse HR, Recanzone GH, Merzenich MM (1993) Alterations in correlated activity parallel ICMS-induced representational plasticity. Neuroreport 5: 173–176

    Google Scholar 

  16. Dinse HR, Spengler F, Godde B (1995) Short-term plasticity of topographic organization of somatosensory cortex and improvement of spatial discrimination performance induced by an associative pairing of tactile stimulation. Institut für Neuroinformatik, Ruhr Universität, Bochum. (Internal report INI 01-95), pp 1–8

    Google Scholar 

  17. Edelman GM, Gally JA (1992) Nitric oxide: linking space and time in the brain. Proc Natl Acad Sci USA 89: 11651–11652

    Google Scholar 

  18. Eurich C, Schwegler H, Strohmeier M (1994) Coarse coding: Die Berechnung des Aufloesungsvermoegens von Ensembles breitbandig abgestimmter McCulloch-Pitts-Neuronen. ZKW-Bericht no. 6/94. Zentrum für Kognitionswissenschaften, University of Bremen

  19. Eysel UT (1992) Remodelling receptive fields in sensory cortices. Cur Opin Neurobiol 2: 389–391

    Google Scholar 

  20. Favorov OV, Diamond ME (1990) Demonstration of discrete placedefined columns — segregates — in the cat SI. J Comp Neurol 298:97–112

    Google Scholar 

  21. Favorov OV, Kelly DG (1994) Minicolumnar organization within somatosensory cortical segregates. I. Development of afferent connection. Cerebral Cortex 4: 408–427

    Google Scholar 

  22. Garraghty PE, Kaas JH (1992) Dynamic features of sensory and motor maps. Cur Opin Neurobiol 2: 522–527

    Google Scholar 

  23. Gilbert CD, Wiesel TN (1981) Laminar specialization and intra-cortical connections in cat primary visual cortex. In: Schmidt F, et al (ed) The organization of the cerebral cortex. MIT Press, Cambridge, Mass

    Google Scholar 

  24. Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356: 150–152

    Google Scholar 

  25. Godde B, Spengler F, Dinse HR (1994) Hebbian pairing of tactile stimulation. I. Cortical physiology: rapid topographic reorganization of somatosensory cortex of adult rats. Soc Neurosci Abstr 20: 1429

    Google Scholar 

  26. Grajski KA, Merzenich MM (1990) Neural network simulation of somatosensory representational plasticity. In: Touretzsky DS (ed) Advances in neural information processing systems, vol. 2 Morgan-Kaufmann, pp 52–59

  27. Granger R, Whitson J, Larson J, Lynch G (1994) Non-Hebbian properties of long term potentiation enable high capacity encoding of temporal sequences. Proc Natl Acad Sci USA 91: 10104–10108

    Google Scholar 

  28. Guise JLU, Chapin JK (1986) Influence of local cortico-cortical circuits on layer V receptive fields in the rat SI barrelfield. Soc Neurosci Abstr 16:1433

    Google Scholar 

  29. Hebb OD (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  30. Hellwig B, Schüz A, Aersten A (1994) Synapses on axon collaterals of pyramidal cells are spaced at random intervals: a Golgi study in the mouse cerebral cortex. Biol Cybern 71: 1–12

    Google Scholar 

  31. Heusler P, Böhmer G, Dinse HR (1995) Mechanisms involved in cortical plasticity induced by intracortical microstimulation (ICMS) of adult rat somatosensory cortex in vitro. Eur J Neurosci Suppl S8: 43

    Google Scholar 

  32. Hinton GE, McClelland JL, Rumelhart DE (1986) Distributed representations. In: Rumelhart DE, McClelland JL (ed) Parallel distributed processing, vol. 1. MIT Press, Cambridge, Mass, pp 77–109

    Google Scholar 

  33. Jensen KF, Killackay HP (1987) Terminal arbors of axons projecting o the somatosensory cortex of adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci 7: 3529–3543

    Google Scholar 

  34. Jones EG (1975) Varieties and distribution of the non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160: 205–268

    Google Scholar 

  35. Jones EG (1981) Anatomy of cerebral cortex: columnar input-output organization. In: Schmitt F, et al. (ed) The organization of the cerebral cortex. MIT Press, Cambridge, Mass, pp 199–235

    Google Scholar 

  36. Joublin F, Spengler F, Wacquant S, Dinse H (1994) Simulations of experimental results on somatosensory map reorganization induced by intra-cortical micro-stimulation. In: Haiin J, Karplus W, Rimane R (ed) First joint conference of international simulation societies proceedings. Zurich, pp 562–566

  37. Kaas JH, Krubitzer LA, Chino YM, Langstem AL, Policy EH, Blair N (1990) Reorganization of retinotopic cortical maps in adult mammals after lesion of the retina. Science 248: 229–231

    Google Scholar 

  38. Kapadia MK, Gilbert CD, Westheimer G (1994) A quantitative measure for short-term cortical plasticity in human vision. J Neurosci 14: 451–457

    Google Scholar 

  39. Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260: 1518–1521

    Google Scholar 

  40. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–69

    Google Scholar 

  41. Kossel A, Bonhoeffer T, Bolz J (1990) Non-Hebbian synapses in rat visual cortex. Neuroreport 1: 115–118

    Google Scholar 

  42. Lamour Y (1983) Etude de l'organisation laminaire du cortex somesthésique primaire du rat. Doctoral thesis, Université Pierre et Marie Curie, Paris VI, France

    Google Scholar 

  43. Lamour Y, Guilbaud G, Willer JC (1983) Rat somatosensory (Sm1) cortex. II. Laminar and columnar organization of noxious and nonnoxious inputs. Exp Brain Res 49: 46–54

    Google Scholar 

  44. Marin-Padilla M (1974) Three dimensional reconstruction of the pericellular nests (baskets of the motor-area 4- and visual-area 17-areas of the human cerebral cortex): a Golgi study. Z Anat Entwickl-Gesch 144:123–135

    Google Scholar 

  45. Merzenich MM, Sameshima K (1993) Cortical plasticity and memory. Cur Opin Neurobiol 3: 187–196

    Google Scholar 

  46. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224: 591–605

    Google Scholar 

  47. Montague PR, Sejnowski TJ (1994) The predictive brain: Temporal coincidence and temporal order in synaptic learning mechanisms. Learning Memory 1: 1–33

    Google Scholar 

  48. Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO (ed) The mindful brain. MIT Press, Cambridge, Mass. pp 7–50

    Google Scholar 

  49. Mountcastle VB, Powell TPS (1959) Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull Johns Hopkins Hosp 105: 201–232

    Google Scholar 

  50. Nudo RJ, Jenkins WM, Merzenich MM (1990) Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosen Mot Res 7: 463–483

    Google Scholar 

  51. O'Leary DDM, Schlaggar BL, Tuttle R (1994) Specification of neocortical areas and thalamocortical connections. Annu Rev Neurosci 17:419–439

    Google Scholar 

  52. Parnavelas JG, Stern CD, Stirling RV (1988) Sharpening the pattern. In: Parnavelas JG, Stern CD, Stirling RV (ed) The making of the nervous system. Part IV. Oxford University Press, Oxford

    Google Scholar 

  53. Pascual-Leone A, Torres F (1993) Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116: 39–52

    Google Scholar 

  54. Pearson JC, Finkel LH, Edelman GM (1987) Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection. J Neurosci 7: 4209–4223

    Google Scholar 

  55. Poggio T, Fahle M, Edelman S (1992) Fast perceptual learning in visual hyperacuity. Science 256: 1018–1021

    Google Scholar 

  56. Pons TP, Garraghty PE, Mishkin M (1988) Lesion-induced plasticity in the second somatosensory cortex of adult macaques. Proc Natl Acad Sci USA 85: 5279–5281

    Google Scholar 

  57. Recanzone GH, Merzenich MM, Dinse HR (1992a) Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation. Cerebral Cortex 2: 181–196

    Google Scholar 

  58. Recanzone GH, Merzenich MM, Jenkins WM, Grajski K, Dinse HR (1992b) Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency discrimination task. J Neurophysiol 67: 1031–1056

    Google Scholar 

  59. Recanzone GH, Merzenich MM, Schreiner CE (1992c) Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally-based tactile discrimination task. J Neurophysiol 67: 1071–1091

    Google Scholar 

  60. Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103

    Google Scholar 

  61. Ritter H, Martinetz T, Schulten K (1990) Neuronale Netze. Addison-Wesley, Reading, Mass

    Google Scholar 

  62. Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471

    Google Scholar 

  63. Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346: 174–177

    Google Scholar 

  64. Scheich H (1991) Auditory cortex: comparative aspects of maps and plasticity. Cur Opin Neurobiol 1: 236–247

    Google Scholar 

  65. Sholl DA (1956) The organization of the Cerebral Cortex. Methuen, London

    Google Scholar 

  66. Shuishi-Haupt S, Spengler F, Dinse HR (1994) A laminar analysis of cortical ICMS-induced representational plasticity. In: Eisner N, Breer H (ed) Sensory transduction. Thieme, Stuttgart

    Google Scholar 

  67. Sirois D, Hand P (1991) Microstimulation of rat “barrel“ cortex results in an expanded metabolic and electrophysiologic cortical vibrissa representation. Soc Neurosci Abstr 17: 842

    Google Scholar 

  68. Sirosh J, Miikkulainen R (1994) Cooperative self-organization of afferent and lateral connections in cortical maps. Biol Cybern 71: 65–78

    Google Scholar 

  69. Spengler F (1993) Lernen und Vergessen in neuronalen Netzwerken, post-ontogenetische Plastizität, series 10, no. 271. VDI Verlag, Dusseldorf

    Google Scholar 

  70. Spengler F, Dinse HR (1994) Reversible relocation of representational boundaries of adult rats by intracortical microstimulation (ICMS). Neuroreport 5: 949–953

    Google Scholar 

  71. Spengler F, Godde B, Dinse HR (1995) Effects of aging on topographic organization of somatosensory cortex. Neuroreport 6: 469–473

    Google Scholar 

  72. Stoney SD, Thompson WD, Asanuma H (1968) Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol 31: 659–669

    Google Scholar 

  73. Tommerdahl M, Favorov O, Whitsel BL, Nakhle B, Gonchar YA (1993) Minicolumnar activation patterns in cat and monkey SI cortex. Cerebral Cortex 3: 399–411

    Google Scholar 

  74. Weinberger NM, Ashe JH, Metherate R, McKenna TM, Diamond DM, Bakin J (1990) Retuning auditory cortex by learning: a preliminary model of receptive field plasticity. Concepts Neurosci 1: 91–132

    Google Scholar 

  75. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55–80

    Google Scholar 

  76. Xerri C, Stern JM, Merzenich MM (1994) Alterations of the cortical representation of the rat ventrum induced by nursing behavior. J Neurosci 14: 1710–1721

    Google Scholar 

  77. Zepka RF, Spengler F, Dinse HR (1994) Fast and reversible reorganization of the thalamo-cortical pathway of adult rats induced by intracortical and intrathalamic microstimulation. Soc Neurosci Abstr 20: 1431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joublin, F., Spengler, F., Wacquant, S. et al. A columnar model of somatosensory reorganizational plasticity based on Hebbian and non-Hebbian learning rules. Biol. Cybern. 74, 275–286 (1996). https://doi.org/10.1007/BF00652228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652228

Keywords