Exceptional Balanced Triangulations on Surfaces | Graphs and Combinatorics Skip to main content
Log in

Exceptional Balanced Triangulations on Surfaces

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Izmestiev, Klee and Novik proved that any two balanced triangulations of a closed surface \(F^2\) can be transformed into each other by a sequence of six operations called basic cross flips. Recently Murai and Suzuki proved that among these six operations only two operations are almost sufficient in the sense that, with for finitely many exceptions, any two balanced triangulations of a closed surface \(F^2\) can be transformed into each other by these two operations. We investigate such finitely many exceptions, called exceptional balanced triangulations, and obtain the list of exceptional balanced triangulations of closed surfaces with low genera. Furthermore, we discuss the subsets \(\mathcal{O}\) of the six operations satisfying the property that any two balanced triangulations of the same closed surface can be connected through a sequence of operations from \(\mathcal{O}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ellingham, M.N., Stephens, C., Zha, X.: The nonorientable genus of complete tripartite graphs. J. Combin. Theory, Ser. B 96, 529–559 (2006)

    Article  MathSciNet  Google Scholar 

  2. Izmestiev, I., Klee, S., Novik, I.: Simplicial moves on balanced complexes. Adv. Math. 320, 82–114 (2017)

    Article  MathSciNet  Google Scholar 

  3. Kawarabayashi, K., Nakamoto, A., Suzuki, Y.: \(N\)-Flips in even triangulations on surfaces. J. Combin. Theory, Ser. B. 99, 229–246 (2009)

    Article  MathSciNet  Google Scholar 

  4. Juhnke-Kubitzke, M., Venturello, L.: Balanced shellings and moveson balanced manifolds. arXiv:1804.06270

  5. Murai, S., Suzuki, Y.: Balanced subdivisions and flips on surfaces. Proc. Am. Math. Soc. 146, 939–951 (2018)

    Article  MathSciNet  Google Scholar 

  6. Nakamoto, A., Sakuma, T., Suzuki, Y.: \(N\)-Flips in even triangulations on the sphere. J. Graph Theory 51, 260–268 (2006)

    Article  MathSciNet  Google Scholar 

  7. Pachner, U.: Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter smilinearer Mannigfaltigkeiten. Abh. Math. Sem. Univ. Hamburg 57, 69–86 (1987)

    Article  MathSciNet  Google Scholar 

  8. Pachner, U.: P.L. homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Combin. 12, 129–145 (1991)

    Article  MathSciNet  Google Scholar 

  9. White, A.T.: The genus of the complete tripartite graph \(K_{mn, n, n}\). J. Combin. Theory 7, 283–285 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

S. Klee: Research supported by NSF Grant DMS-1600048. S. Murai: Research supported by KAKENHI16K05102. Y. Suzuki: Research supported by KAKENHI16K05250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klee, S., Murai, S. & Suzuki, Y. Exceptional Balanced Triangulations on Surfaces. Graphs and Combinatorics 35, 1361–1373 (2019). https://doi.org/10.1007/s00373-018-2001-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-2001-x

Keywords

Navigation