Edge-Primitive Graphs of Prime Power Order | Graphs and Combinatorics
Skip to main content

Edge-Primitive Graphs of Prime Power Order

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph is called edge-primitive if its automorphism group acts primitively on its edge-set. In this paper, edge-primitive graphs of prime power order are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, London (1985)

    MATH  Google Scholar 

  3. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996)

    Book  MATH  Google Scholar 

  4. Giudici, M., Li, C.H.: On finite edge-primitive and edge-quasiprimitive graphs. J. Comb. Theory Ser. B 100, 275–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, S.T., Feng, Y.Q., Li, C.H.: Edge-primitive tetravalent graphs. J. Comb. Theory Ser. B 112, 124–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, S.T., Feng, Y.Q., Li, C.H.: The finite edge-primitive pentavalent graphs. J. Algebr. Comb. 38, 491–497 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guralnick, R.M.: Subgroups of prime power index in a simple group. J. Algebra 225, 304–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  9. Li, C.H., Praeger, C.E., Venkatesh, A., Zhou, S.M.: Finite locally-quasiprimitive graphs. Discrete Math. 246, 197–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C.H.: The finite primitive permutation groups containing an abelian regular subgroup. Proc. Lond. Math. Soc. 87, 725–748 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, C.H., Lou, B.G., Pan, J.M.: Finite locally primitive abelian Cayley graphs. Sci. China 54(4), 854–945 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Li, C.H., Zhang, H.: The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs. Proc. Lond. Math. Soc. 103, 441–472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C.H., Ma, L.: Locally primitive graphs and bidirect producs of graphs. J. Aust. Math. Soc. 91(2), 231–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pan, J.M., Wu, C.X., Yin, F.G.: Finite edge-primitive graphs of prime valency. Eur. J. Comb. 73, 61–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pan, J. M., Wu, C. X., Yin, F. G.: Edge-primitive Cayley graphs on abelian and dihedral groups. Discrete Math. (in press)

  16. Praeger, C.E.: Primitive permutation groups with a doubly transitive subconstituent. J. Aust. Math. Soc. Ser. A 45, 66–77 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Praeger, C.E.: The inclusion problem for finite primitive permutation groups. Proc. Lond. Math. Soc 60(3), 68–88 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Praeger, C.E.: Finite transitive permutation groups and vertex-transitive graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry: Algebraic Methods and Applications. NATO Advanced Science Institute Series C 497, pp. 277–318. Klumer, Dordrecht (1997)

    Chapter  Google Scholar 

  19. Pablo, S.: Finite primitive groups and edge-transitive hypergraphs. J. Algebr. Comb. 43(3), 715–734 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weiss, R.M.: Kantenprimitive Graphen vom Grad drei. J. Comb. Theory Ser. B 15, 269–288 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, C. X., Pan, J. M.: Finite hexavalant edge-primitive graphs (submitted)

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by National Natural Science Foundation of China (11461007, 11231008, ZR2018PA005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Huang, Z. & Wu, C. Edge-Primitive Graphs of Prime Power Order. Graphs and Combinatorics 35, 249–259 (2019). https://doi.org/10.1007/s00373-018-1997-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1997-2

Keywords

Mathematics Subject Classification