Abstract
In this paper we construct two infinite families of transitive two-character sets and hence two infinite families of symmetric strongly regular graphs. We also construct infinite families of quasi-quadrics.
Similar content being viewed by others
References
Baker R.D., Bonisoli A., Cossidente A., Ebert G.L.: Mixed partitions of PG(5, q). Discrete Math. 208/209, 23–29 (1999)
Bose R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13, 389–419 (1963)
Bosma W., Cannon J., Playoust C.: The Magma algebra system I. The user language. J. Symbolic Comput. 24, 235–265 (1997)
Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122 (1986)
Chao C.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 158, 247–256 (1971)
Cossidente, A., Ebert, G., Marino, G.: Commuting Hermitian varieties and the flag geometry of PG(2, q 2) (unpublished)
Cossidente A., Marino G.: The Veronese embedding and two-character sets. Des. Codes Cryptogr. 42, 103–107 (2007)
Cossidente A., Durante N., Marino G., Penttila T., Siciliano A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46, 231–241 (2008)
De Clerck F., Hamilton N., O’Keefe C.M., Penttila T.: Quasi-quadrics and related structures. Australas. J. Combin. 22, 151–166 (2000)
Delsarte Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)
Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University Press, Oxford (1985)
Tutte W.T.: A family of cubical graphs. Proc. Cambridge Philos. Soc. 43, 459–474 (1947)
Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Rogers, S., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: Atlas of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/v3
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cossidente, A., Penttila, T. Two-Character Sets Arising from Gluings of Orbits. Graphs and Combinatorics 29, 399–406 (2013). https://doi.org/10.1007/s00373-011-1115-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-011-1115-1