Two-Character Sets Arising from Gluings of Orbits | Graphs and Combinatorics Skip to main content
Log in

Two-Character Sets Arising from Gluings of Orbits

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper we construct two infinite families of transitive two-character sets and hence two infinite families of symmetric strongly regular graphs. We also construct infinite families of quasi-quadrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker R.D., Bonisoli A., Cossidente A., Ebert G.L.: Mixed partitions of PG(5, q). Discrete Math. 208/209, 23–29 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bose R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math. 13, 389–419 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosma W., Cannon J., Playoust C.: The Magma algebra system I. The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chao C.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 158, 247–256 (1971)

    Article  MATH  Google Scholar 

  6. Cossidente, A., Ebert, G., Marino, G.: Commuting Hermitian varieties and the flag geometry of PG(2, q 2) (unpublished)

  7. Cossidente A., Marino G.: The Veronese embedding and two-character sets. Des. Codes Cryptogr. 42, 103–107 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cossidente A., Durante N., Marino G., Penttila T., Siciliano A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46, 231–241 (2008)

    Article  MathSciNet  Google Scholar 

  9. De Clerck F., Hamilton N., O’Keefe C.M., Penttila T.: Quasi-quadrics and related structures. Australas. J. Combin. 22, 151–166 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Delsarte Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  12. Tutte W.T.: A family of cubical graphs. Proc. Cambridge Philos. Soc. 43, 459–474 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Rogers, S., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: Atlas of Finite Group Representations. http://brauer.maths.qmul.ac.uk/Atlas/v3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A., Penttila, T. Two-Character Sets Arising from Gluings of Orbits. Graphs and Combinatorics 29, 399–406 (2013). https://doi.org/10.1007/s00373-011-1115-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1115-1

Keywords

Mathematics Subject Classification (2000)

Navigation