Abstract
The Turán number \({ex(n,\mathcal H)}\) of \({\mathcal H}\) is the maximum number of edges of an n-vertex simple graph having no member of \({\mathcal H}\) as a subgraph. We show lower and upper bounds for Turán numbers for disjoint copies of graphs.
Similar content being viewed by others
References
Bollobás B.: Extremal graph theory. Dover Publications, Mineola (2004)
Bollobás B.: Modern graph theory. Springer-Verlag, New York (2002)
Diestel R.: Graph theory. Springer-Verlag, New York (1997)
Erdős P., Gallai T.: On maximal paths and circuits in graphs . Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)
Füredi Z., Naor A., Verstraëte J.: On the Turán number for the hexagon.. Adv. Math. 203, 476–496 (2006)
Hajnal, A., Szemerédi, E.: Proof of a conjecture of Erdős. In: Erdős, P., Renyi, A., Sós, V.: (eds) Combinatorial Theory an its Applications, vol. II. Colloq. Math. Soc. J. Bolyai 4, North-Holland, pp. 1163–1164 (1970)
Ore O.: Arc coverings of graphs. Ann. Math. Pure Appl. 55, 315–321 (1961)
Simonovits M.: A method for solving extremal problems in extremal graph theory. In: Erdős, P., Katona, G. (eds) Theory of Graphs, pp. 279–319. Academic Press, New York (1968)
Shen J.: On two Turán numbers. J. Graph Theory 51, 244–250 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gorgol, I. Turán Numbers for Disjoint Copies of Graphs. Graphs and Combinatorics 27, 661–667 (2011). https://doi.org/10.1007/s00373-010-0999-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-010-0999-5