Abstract
Keyframes are a summary representation of motion capture data, which provide the basis for compression, retrieval, overview and reuse of motion capture data. In this paper, a new approach is proposed to extract keyframes from motion capture data. This approach uses the angle of rotation of limbs and the distance between joints as the feature representation of human movement and calculates limb saliency based on the multiscale saliency of each motion feature. Then the weighted sum of limb saliency is defined as pose saliency, and the frames corresponding to the local maxima on the pose saliency curve are extracted as the initial keyframes. Finally, guided by the initial keyframes, the optimal keyframes are extracted based on the reconstruction error optimization algorithm. Experiments demonstrate that this approach can effectively extract the keyframes with high visual perceptual quality and low reconstruction error, and better meet the needs of real-time analysis and compression of motion capture data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Guo, S., Southern, R., Chang, J., Greer, D., Zhang, J.J.: Adaptive motion synthesis for virtual characters: a survey. Vis. Comput. 31(5), 497–512 (2015). https://doi.org/10.1007/s00371-014-0943-4
Arikan, O.: Compression of motion capture databases. ACM Trans Graph. 25(3), 890–897 (2006). https://doi.org/10.1145/1141911.1141971
Costa, BF., Esperança, C.: Motion Capture Analysis and Reconstruction Using Spatial Keyframes. In: Cláudio AP, Bouatouch K, Chessa M, Paljic A, Kerren A, Hurter C, et al., editors. Computer Vision, Imaging and Computer Graphics Theory and Applications. Springer International Publishing; p. 48–70 (2020)
Kim, Y., Lee, S.H.: Keyframe-based multi-contact motion synthesis. Vis. Comput. 37(7), 1949–1963 (2021). https://doi.org/10.1007/s00371-020-01956-9
Assa, J., Caspi, Y., Cohen-Or, D.: Action synopsis: pose selection and illustration. ACM Trans Graph. 24(3), 667–676 (2005). https://doi.org/10.1145/1073204.1073246
Qi, T., Feng, Y.F., Xiao, J., Zhuang, Y.T., Yang, X.S., Zhang, J.J.: A semantic feature for human motion retrieval. Comput. Anim. Virt. Worlds 24(3–4), 399–407 (2013). https://doi.org/10.1002/cav.1505
Xia, G., Xue, P., Zhang, D., Liu, Q.: Keyframe-editable real-time motion synthesis. IEEE Trans. Circuits Syst. Video Technol. 32(7), 4538–4551 (2022). https://doi.org/10.1109/TCSVT.2021.3129478
Ik Soo, L., Thalmann, D.: Key-posture extraction out of human motion data by curve simplification. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. vol. 2; p. 1167–1169 vol.2 (2001)
Togawa, H., Okuda, M.: Position-Based Keyframe Selection for Human Motion Animation. In: 11th International Conference on Parallel and Distributed Systems (ICPADS’05). vol. 2; p. 182–185 (2005)
Xiao, J., Zhuang, Y., Yang, T., Wu, F.: An Efficient keyframe extraction from motion capture data. In: Nishita, T., Peng, Q., Seidel, H.P. (eds.) Advances in Computer Graphics, pp. 494–501. Springer, Berlin, Heidelberg (2006)
Liu, Y., Liu, J.: Keyframe extraction from motion capture data by optimal reconstruction error. J. Comput.-Aided Des. Graph. 22(4), 670–675 (2010)
Miura, T., Kaiga, T., Shibata, T., Katsura, H., Tajima, K., Tamamoto, H.: A hybrid approach to keyframe extraction from motion capture data using curve simplification and principal component analysis. IEEE J. Trans. Electr. Electron. Eng. 9(6), 697–699 (2014). https://doi.org/10.1002/tee.22029
Xu, C.X., Yu, W.J., Li, Y.R., Lu, X.Q., Wang, M.L., Yang, X.S.: KeyFrame extraction for human motion capture data via multiple binomial fitting. Comput. Anim. Virt. Worlds (2021). https://doi.org/10.1002/cav.1976
Huang, K.S., Chang, C.F., Hsu, Y.Y., Yang, S.N.: Key Probe: a technique for animation keyframe extraction. Vis. Comput. 21(8), 532–541 (2005). https://doi.org/10.1007/s00371-005-0316-0
Jin, C., Fevens, T., Mudur, S.: Optimized keyframe extraction for 3D character animations. Comput. Anim. Virt. Worlds 23(6), 559–568 (2012). https://doi.org/10.1002/cav.1471
Liu, Xm., Hao, Am., Zhao, D.: Optimization-based key frame extraction for motion capture animation. Vis. Comput. 29(1), 85–95 (2013). https://doi.org/10.1007/s00371-012-0676-1
Zhang, Q., Zhang, S.L., Zhou, D.S.: Keyframe extraction from human motion capture data based on a multiple population genetic algorithm. Symm.-Basel. 6(4), 926–937 (2014). https://doi.org/10.3390/sym6040926
Chang, XJ., Yi, PF., Zhang, Q., Król, D., Madeyski, L., Nguyen, NT.: editors.: Key Frames Extraction from Human Motion Capture Data Based on Hybrid Particle Swarm Optimization Algorithm [Conference Paper]. Springer International Publishing
Roberts, R., Lewis, J.P., Anjyo, K., Seo, J., Seol, Y.: Optimal and interactive keyframe selection for motion capture. Comput. Vis. Media. 5(2), 171–191 (2019). https://doi.org/10.1007/s41095-019-0138-z
Xia, G.Y., Sun, H.J., Niu, X.Q., Zhang, G.Q., Feng, L.: Keyframe extraction for human motion capture data based on joint Kernel sparse representation. IEEE Trans. Industr. Electron. 64(2), 1589–1599 (2017). https://doi.org/10.1109/TIE.2016.2610946
Xia, G.Y., Chen, B.J., Sun, H.J., Liu, Q.S.: Nonconvex low-rank kernel sparse subspace learning for keyframe extraction and motion segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1612–1626 (2021). https://doi.org/10.1109/TNNLS.2020.2985817
Liu, F., Zhuang, Y., Wu, F., Pan, Y.: 3D motion retrieval with motion index tree. Comput. Vis. Image Underst. 92(2–3), 265–284 (2003). https://doi.org/10.1016/j.cviu.2003.06.001
Park, M.J., Shin, S.Y.: Example-based motion cloning. Comput. Anim. Virt. Worlds. 15(3–4), 245–257 (2004). https://doi.org/10.1002/cav.27
Zhang, Q., Yu, S.P., Zhou, D.S., Wei, X.P.: An efficient method of key-frame extraction based on a cluster algorithm. J. Hum. Kinet. 39(1), 5–13 (2013). https://doi.org/10.2478/hukin-2013-0063
Sun, B., Kong, D., Wang, S., Li, J., Keyframe extraction for human motion capture data based on affinity propagation. In: IEEE 9th annual information technology. Electronics and Mobile Communication Conference (IEMCON) 2018, 107–112 (2018)
Voulodimos, A., Rallis, I., Doulamis, N.: Physics-based keyframe selection for human motion summarization. Multimed. Tools Appl. 79(5–6), 3243–3259 (2020). https://doi.org/10.1007/s11042-018-6935-z
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998). https://doi.org/10.1109/34.730558
Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans Graph. 24(3), 659–666 (2005). https://doi.org/10.1145/1073204.1073244
Bulut, E., Capin, T.: Key Frame Extraction from Motion Capture Data by Curve Saliency. In: CASA 2007 – Computer Animation and Social Agents. Hassel University Press; p. 63–67 (2007)
Halit, C., Capin, T.: Multiscale motion saliency for keyframe extraction from motion capture sequences. Comput Anim. Virt Worlds 22(1), 3–14 (2011). https://doi.org/10.1002/cav.380
Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans Graph. 24(3), 677–685 (2005). https://doi.org/10.1145/1073204.1073247
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, Y., Chen, L. & Lin, Z. Keyframe extraction for motion capture data via pose saliency and reconstruction error. Vis Comput 39, 4943–4953 (2023). https://doi.org/10.1007/s00371-022-02639-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02639-3