Abstract
The purpose of image smoothing is to smooth out low-contrast textures while preserving meaningful structures. Although this problem has been studied for decades, it still leaves a lot of space to improve. Recently, learning-based edge detectors have superior performance to traditional manually-designed detectors. Based on the edge detection technique, we present a novel optimization-based image smoothing model combining semantic prior and perform \(L_0\) gradient minimization recursively in our framework to refine the result. Our framework combines the advantage of the state-of-the-art edge detector and the ability of \(L_0\) gradient minimization for structure-preserving image smoothing. Moreover, we employ a large number of real-world images and perform various experiments to evaluate our algorithm. Experimental results show that our algorithm outperforms state-of-the-art algorithms, especially in extracting subjectively-meaningful structures.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
high-frequency textures belonging to input color image are wrongly copied to the output refined depth map, leading to visual artifacts. This is a common issue difficult to solve in the depth upsampling community.
References
Baek, J., Jacobs, D.E.: Accelerating spatially varying Gaussian filters. ACM Trans. Graph. (TOG) 29(6), 169 (2010)
Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. TPAMI 37(8), 1670–1687 (2015)
Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Trans. Graph. (TOG) 33(4), 159 (2014)
Bi, S., Han, X., Yu, Y.: An l 1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Trans. Graph. (TOG) 34(4), 78 (2015)
Cai, B., Xing, X., Xu, X.: Edge/structure preserving smoothing via relativity-of-Gaussian. In: IEEE International Conference on Image Processing (2017)
Bonneel, N., Sunkavalli, K., Tompkin, J., Sun, D., Paris, S., Pfister, H.: Interactive intrinsic video editing. ACM Trans. Graph. (TOG) 33(6), 197 (2014)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 37(8), 1558–1570 (2015)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification and Scene Analysis, vol. 3. Wiley, New York (1973)
Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27(3), 67 (2008)
Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. (TOG) 28(3), 22 (2009)
Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: CVPR (2016)
Gastal, E.S., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. (TOG) 30(4), 69 (2011)
Guo, X.: Lime: a method for low-light image enhancement. In: ACM International Conference on Multimedia (2016)
He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV (2010)
He, L., Schaefer, S.: Mesh denoising via l0 minimization. ACM Trans. Graph. (TOG) 32(4), 64 (2013)
Jeon, J., Lee, H., Kang, H., Lee, S.: Scale-aware structure-preserving texture filtering. Comput. Graph. Forum 35, 77–86 (2016)
Jung, C., Yu, S., Kim, J.: Intensity-guided edge-preserving depth upsampling through weighted l0 gradient minimization. J. Vis. Commun. Image Represent. 42, 132–144 (2017)
Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. (TOG) 29(4), 1–10 (2010)
Kim, Y., Koh, Y.J., Lee, C., Kim, S., Kim, C.S.: Dark image enhancement based onpairwise target contrast and multi-scale detail boosting. In: IEEE International Conference on Image Processing (2015)
Li, L., Guo, X., Feng, W., Zhang, J.: Soft clustering guided image smoothing. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2018)
Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: CVPR (2014)
Li, Z., Snavely, N.: Learning intrinsic image decomposition from watching the world. In: CVPR (2018)
Liu, W., Chen, X., Yang, J., Wu, Q.: Robust color guided depth map restoration. IEEE Trans. Image Process. (TIP) 26(1), 315–327 (2017)
Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: CVPR (2017)
Liang, Z., Xu, J., Zhang, D., Cao, Z.,Zhang, L.: A hybrid l1-l0 layer decomposition model for tone mapping. In: CVPR (2018)
Martin, D., Fowlkes, C., Tal, D., Malik, J., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV vol. 2, pp. 416–423 (2001)
Meka, A., Fox, G., Zollhöfer, M., Richardt, C., Theobalt, C.: Live user-guided intrinsic video for static scene. IEEE Trans. Vis. Comput. Graph. (TVCG) 23(11), 2447–2454 (2017)
Meka, A., Zollhöfer, M., Richardt, C., Theobalt, C.: Live intrinsic video. ACM Trans. Graph. (TOG) 35(4), 109 (2016)
Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. (TIP) 23(12), 5638–5653 (2014)
Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR (2012)
Ran, M., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps. In: CVPR (2014)
Rother, C., Kiefel, M., Zhang, L., Schölkopf, B., Gehler, P.V.: Recovering intrinsic images with a global sparsity prior on reflectance. In: NIPS (2011)
Shen, J., Yang, X., Jia, Y., Li, X.: Intrinsic images using optimization. In: CVPR (2011)
Shen, J., Yang, X., Li, X., Jia, Y.: Intrinsic image decomposition using optimization and user scribbles. IEEE Trans. Cybern. 43(2), 425–436 (2013)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)
Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. (TOG) 28(5), 147 (2009)
Sun, Y., Schaefer, S., Wang, W.: Denoising point sets via l0 minimization. Comput. Aided Geom. Des. 35, 2–15 (2015)
Sun, Y., Schaefer, S., Wang, W.: Image structure retrieval via \(l_0\) minimization. IEEE Trans. Vis. Comput. Graph. (TVCG) 24(7), 2129–2139 (2018)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV (1998)
Wei, X., Yang, Q., Gong, Y.: Joint contour filtering. Int. J. Comput. Vis. (IJCV) 126(11), 1245–1265 (2018)
Wu, C., Zollhöfer, M., Nießner, M., Stamminger, M., Izadi, S., Theobalt, C.: Real-time shading-based refinement for consumer depth cameras. ACM Trans. Graph. (TOG) 33(6), 200 (2014)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)
Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(l_0\) gradient minimization. ACM Trans. Graph. (TOG) 30(6), 174 (2011)
Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)
Yang, Q.: Recursive bilateral filtering. In: ECCV (2012)
Yang, Q.: Semantic filtering. In: CVPR (2016)
Yu, S., Jung, C., Yun, I., Kim, J.: Intensity-guided depth upsampling using edge sparsity and weighted \(l\_ {0}\) gradient minimization. In: IEEE International Conference on Image Processing (2018)
Zhang, F., Dai, L., Xiang, S., Zhang, X.: Segment graph based image filtering: fast structure-preserving smoothing. In: ICCV (2015)
Zhang, J., Sclaroff, S., Zhe, L., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 fps. In: ICCV (2015)
Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: ECCV (2014)
Zhang, Q., Yuan, G., Xiao, C., Zhu, L., Zheng, W.S.: High-quality exposure correction of underexposed photos. In: ACM International Conference on Multimedia (2018)
Zhao, Q., Tan, P., Dai, Q., Shen, L., Wu, E., Lin, S.: A closed-form solution to retinex with nonlocal texture constraints. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34(7), 1437–1444 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, L., Fu, G. Structure-preserving image smoothing with semantic cues. Vis Comput 36, 2017–2027 (2020). https://doi.org/10.1007/s00371-020-01950-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01950-1