Abstract
In this study, a novel adaptive rendering approach is proposed to remove Monte Carlo noise while preserving image details through a feature-based reconstruction. First, noise in the additional features is removed using a guided image filter that reduces the impact of noisy features involving strong motion blur or depth of field. The Sobel operator is then employed to recognize the geometric structures by robustly computing a gradient buffer for each feature. Given the gradient information for high-dimensional features, we compute the optimal filter parameters using a data-driven method. Finally, an error analysis is derived through a two-step smoothing strategy to produce a smooth image and guide the adaptive sampling process. Experimental results indicate that our approach outperforms state-of-the-art methods in terms of visual image quality and numerical error.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Li, T.M., Wu, Y.T., Chuang, Y.Y.: SURE-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31(6), 194:1–194:9 (2012)
Rousselle, F., Manzi, M., Zwicker, M.: Robust denoising using feature and color information. Comput. Graph. Forum 32(7), 121–130 (2013)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30(6), 6:1–6:11 (2011)
Moon, B., Carr, N., Yoon, S.: Adaptive rendering based on weighted local regression. ACM Trans. Graph. 33(5), 170:1–170:14 (2014)
Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34(4), 122:1–122:12 (2015)
Bauszat, P., Eisemann, M., Eisemann, E.: General and robust error estimation and reconstruction for Monte Carlo rendering. Comput. Graph. Forum 34(2), 597–608 (2015)
He, K., Sun, J., Tang, X.: Guided Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(6), 1397–1409 (2010)
Kajiya, J.T.: The rendering equation. In: ACM SIGGRAPH, pp. 143–150 (1986)
Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27(3), 33:1–33:10 (2008)
Durand, F., Holzschuch, N., Soler, C., Chan, E., Sillion, F.X.: A frequency analysis of light transport. ACM Trans. Graph. 24(3), 1115–1126 (2005)
Soler, C., Subr, K., Durand, F., Holzschuch, N., Sillion, F.: Fourier depth of field. ACM Trans. Graph. 28(2), 18:1–18:12 (2009)
Egan, K., Tseng, Y.T., Durand, F., Holzschuch, N.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans Graph 28(3), 93:1–93:13 (2009)
Egan, K., Hecht, F., Durand, F., Ramamoorthi, R.: Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30(2), 9:1–9:13 (2011)
Egan, K., Durand, F., Ramamoorthi, R.: Practical filtering for efficient ray-traced directional occlusion. ACM Trans. Graph. 30(6), 180:1–180:10 (2011)
Belcour, l, Soler, C., Subr, K., Holzschuch, N., Durand, F.: 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32(3), 31:1–31:18 (2011)
Lehtinen, J., Aila, T., Chen, J., Laine, S., Durand, F.: Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 31(4), 55:1–55:10 (2012)
Lehtinen, J., Aila, T., Laine, S., Durand, F.: Reconstructing the indirect light field for global illumination. ACM Trans Graph 30(4), 51:1–51:12 (2011)
Kettunen, M., Manzi, M., Aittala, M., Lehtinen, J.: Gradient-domain path tracing. ACM Trans. Graph. 34(4), 123:1–123:13 (2015)
Manzi, M., Vicini, D., Zwicker, M.: Regularizing image reconstruction for gradient-domain rendering with feature patches. Comput. Graph. Forum 35(2), 263–273 (2016)
Sen, P., Darabi, S.: Compressed rendering: a rendering application of compressed sensing. IEEE Trans. Vis. Comput. Graph. 17(4), 487–499 (2011)
Liu, X.D., WU, J.Z., Zheng, C.W.: KD-tree based parallel adaptive rendering. The Visual Computer 28(6–8), 613–623 (2012)
Mitchell, D.P.: Generating antialiased images at low sampling densities. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 21, pp. 65-72. ACM, Anaheim (1987)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In Proceedings of the International Conference on Computer Vision, pp. 839–846 (1998)
Buades, A., Coll, B., Morel, J.M: A non-local algorithm for image denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 60-65 (2005)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive rendering with non-local means filtering. ACM Trans. Graph. 31(6), 195:1–195:9 (2012)
Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet rendering. ACM Trans. Graph. 28(5), 140:1–140:12 (2009)
Kalantari, N.K., Sen, P.: Removing the noise in Monte Carlo rendering with general image denoising algorithm. Comput. Graph. Forum 32(2), 93–102 (2013)
Sen, P., Darabi, S.: On Filtering the Noise from the Random parameters in Monte Carlo Rendering. ACM Trans Graph 31(3), 18:1–18:14 (2012)
Bauszat, P., Eisemann, M., John, S.: Sample-based manifold filtering for interactive global illumination and depth of field. Comput. Graph. Forum 34(1), 265–276 (2015)
Liu, X.D., Zheng, C.W.: Adaptive cluster rendering via regression analysis. Vis. Comput. 31(1), 105–114 (2015)
Liu, X.D., Zheng, C.W.: Parallel adaptive sampling and reconstruction using multi-scale and directional analysis. The Visual Computer 29(6–8), 501–511 (2013)
Moon, B., Jun, J.Y., Lee, J.: Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Comput. Graph. Forum 32(1), 139–151 (2013)
Bitterli, B., Rousselle, F., Moon, B.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Comput. Graph. Forum 35(4), 107–117 (2016)
Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive high-quality global illumination. Comput. Graph. Forum 30(4), 1361–1368 (2011)
Delbracio, M., Muse, P., Buades, A., Chauvier, J.: Boosting Monte Carlo Rendering by ray histogram fusion. ACM Trans Graph 33(1), 8:1–8:15 (2014)
Moon, B., Guitian, J.A., Yoon, S., Mitchell, K.: Adaptive rendering with linear predictions. ACM Trans. Graph. 34(4), 121:1–121:11 (2015)
Moon, B., McDonagh, S., Mitchell, K., Gross, M.: Adaptive polynomial rendering. ACM Trans Graph 35(4), 40:1–40:11 (2016)
Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph. Forum 34(2), 667–681 (2015)
Ruppert, D., Wand, M.: Multivariate locally weighted least squares regression. The annals of statistics 22(3), 1346–1370 (1994)
Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Fransisco (2010)
Wu, F.K., Zheng, C.W.: Microfacet-based interference simulation for multilayer films. Graphical Models 78(6), 26–35 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, Y., Zheng, C., Zheng, Q. et al. Removing Monte Carlo noise using a Sobel operator and a guided image filter. Vis Comput 34, 589–601 (2018). https://doi.org/10.1007/s00371-017-1363-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1363-z