Abstract
In this paper we represent the object with multiple attentional blocks which reflect some findings of selective visual attention in human perception. The attentional blocks are extracted using a branch-and-bound search method on the saliency map, and meanwhile the weight of each block is determined. Independent particle filter tracking is applied to each attentional block and the tracking results of all the blocks are then combined in a linear weighting scheme to get the location of the entire target object. The attentional blocks are propagated to the object location found in each new frame and the state of the most likely particle in each block is also updated with the new propagated position. In addition, to avoid error accumulation caused by the appearance variations, the object template and the positions of the attentional blocks are adaptively updated while tracking. Experimental results show that the proposed algorithm is able to efficiently track salient objects and is better accounted for partial occlusions and large variations in appearance.























Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1597–1604 (2009)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 798–805 (2006)
Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007)
Babu, R.V., Perez, P., Bouthemy, P.: Robust tracking with motion estimation and local kernel-based color modeling. Image Vis. Comput. 25(8), 1205–1216 (2007)
Baker, S., Matthews, I.: Lucas–Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)
Bousetouane, F., Dib, L., Snoussi, H.: Improved mean shift integrating texture and color features for robust real time object tracking. Vis. Comput. 29(3), 155–170 (2013)
Bulbul, A., Cipiloglu, Z., Capin, T.: A color-based face tracking algorithm for enhancing interaction with mobile devices. Vis. Comput. 26(5), 311–323 (2010)
CAVIAR dataset: (2003). http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
Cho, T.S., Avidan, S., Freeman, W.T.: The patch transform. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1489–1501 (2010)
Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 1530–1537 (2009)
Collins, R.: Mean-shift blob tracking through scale space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 234–240 (2003)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)
Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)
Fan, J., Wu, Y., Dai, S.: Discriminative spatial attention for robust tracking. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 480–493 (2010)
Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2202 (2011)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings of British Machine Vision Conference, vol. 1, pp. 47–56 (2006)
Isard, M., Blake, A.: CONDENSATION—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 1269 (2010)
Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: a branch and bound framework for object localization. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2129–2142 (2009)
Li, G., Wu, H.: Robust object tracking using kernel-based weighted fragments. In: Proceedings of International Conference on Multimedia Technology, pp. 3643–3646 (2011)
Liu, T., Sun, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)
Luo, Y., Yuan, J., Xue, P., Tian, Q.: Saliency density maximization for efficient visual objects discovery. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1822–1834 (2011)
Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2009)
Nejhum, S., Ho, J., Yang, M.: Online visual tracking with histograms and articulating blocks. Comput. Vis. Image Underst. 114(8), 901–914 (2010)
Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)
Palmer, S.E.: Vision Science: Photons to Phenomenology. The MIT Press, Cambridge (1999)
Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 661–675 (2002)
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: parallel robust online simple tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 723–730 (2010)
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600 (1994)
Singh, V., Nevatia, R.: Simultaneous tracking and action recognition for single actor human actions. Vis. Comput. 27(12), 1115–1123 (2011)
Valenti, R., Sebe, N., Gevers, T.: Image saliency by isocentric curvedness and color. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2185–2192 (2009)
Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Real-time detection and tracking for augmented reality on mobile phones. IEEE Trans. Vis. Comput. Graph. 16(3), 355–368 (2010)
Wu, Y., Fan, J.: Contextual flow. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 33–40 (2009)
Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recognit. 46(1), 397–411 (2013)
Zhang, X., Liu, H., Li, X.: Target tracking for mobile robot platforms via object matching and background anti-matching. Robot. Auton. Syst. 58(11), 1197–1206 (2010)
Zhu, J., Lao, Y., Zheng, Y.: Object tracking in structured environments for video surveillance applications. IEEE Trans. Circuits Syst. Video Technol. 20(2), 223–235 (2010)
Acknowledgements
This research is supported by the National Natural Science Foundation of China (61232011, 61202294), the National Key Technology R&D Program (No. 2011BAH27B01, 2011BHA16B08), NSFC-Guangdong Joint Fund (No. U1135005, U1201252), the Industry-academy-research Project of Guangdong (No. 2011A091000032), the Special Foundation of Industry Development for Biology, Internet, New Energy and New Material of Shenzhen (No. JC201104220324A).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, H., Li, G. & Luo, X. Weighted attentional blocks for probabilistic object tracking. Vis Comput 30, 229–243 (2014). https://doi.org/10.1007/s00371-013-0823-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-013-0823-3