Surface reconstruction with higher-order smoothness | The Visual Computer Skip to main content
Log in

Surface reconstruction with higher-order smoothness

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This work proposes a method to reconstruct surfaces with higher-order smoothness from noisy 3D measurements. The reconstructed surface is implicitly represented by the zero-level set of a continuous valued embedding function. The key idea is to find a function whose higher-order derivatives are regularized and whose gradient is best aligned with a vector field defined by the input point set. In contrast to methods based on the first-order variation of the function that are biased toward the constant functions and treat the extraction of the isosurface without aliasing artifacts as an afterthought, we impose a higher-order smoothness directly on the embedding function. After solving a convex optimization problem with a multiscale iterative scheme, a triangulated surface can be extracted using the marching cubes algorithm. We demonstrated the proposed method on several data sets obtained from raw laser-scanners and multiview stereo approaches. Experimental results confirm that our approach allows us to reconstruct smooth surfaces from points in the presence of noise, outliers, large missing parts, and very coarse orientation information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces, In: Proc. of Visualization, pp. 21–28, IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  2. Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 39–48 (2007)

    Google Scholar 

  3. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: ACM SIGGRAPH 98, pp. 415–421 (1998)

    Chapter  Google Scholar 

  4. Bajaj, C., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and scalar fields from 3d scans. In: ACM SIGGRAPH 95, pp. 109–118 (1995)

    Chapter  Google Scholar 

  5. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: ACM SIGGRAPH 2001, pp. 67–76 (2001)

    Google Scholar 

  6. Chuang, M., Luo, L., Brown, B.J., Rusinkiewicz, S., Kazhdan, M.: Estimating the Laplace-Beltrami operator by restricting 3D functions. In: Proceedings of the Symposium on Geometry Processing, July, pp. 1475–1484 (2009)

    Google Scholar 

  7. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: ACM SIGGRAPH 96, pp. 303–312 (1996)

    Chapter  Google Scholar 

  8. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: CVPR ’07, pp. 1–8 (2007)

    Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Hoppe, H., Derose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: ACM SIGGRAPH 92, pp. 71–78 (1992)

    Chapter  Google Scholar 

  11. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 41–50 (2006)

    Google Scholar 

  12. Jalba, A.C., Roerdink, B.T.M.: Efficient surface reconstruction using generalized Coulomb potentials. IEEE Trans. Vis. Comput. Graph. 13(6), 1512–1519 (2007)

    Article  Google Scholar 

  13. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 61–70 (2006)

    Google Scholar 

  14. Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Comput. Graph. 28(6), 801–814 (2004)

    Article  Google Scholar 

  15. Kolev, K., Klodt, M., Brox, T., Cremers, D.: Continuous global optimization in multiview 3D reconstruction. Int. J. Comput. Vis. 84(1), 80–96 (2009)

    Article  Google Scholar 

  16. Lempitsky, V.: Surface extraction from binary volumes with higher-order smoothness. In: IEEE Computer Vision and Pattern Recognition (CVPR), San Francisco (2010)

    Google Scholar 

  17. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: CVPR 07, pp. 1–8 (2007)

    Google Scholar 

  18. Lewiner, T., Lopes, H., Vieira, A., Tavares, G.: Efficient implementation of marching cubes cases with topological guarantees. J. Graph. Gpu Game Tools 8(2), 1–15 (2003)

    Google Scholar 

  19. Lorensen, W.E., Cline, H.E.: Marching Cubes: a high resolution 3d surface construction algorithm. Proc. ACM SIGGRAPH 87 21(4), 163–169 (1987)

    Article  Google Scholar 

  20. Morse, B.S., Yoo, T.S., Chen, D.T., Rheringans, P., Subramanian, K.R.: Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. In: Proceedings of the International Conference on Shape Modeling & Applications, pp. 89–98 (2001)

    Chapter  Google Scholar 

  21. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.: Multi-level partition of unity implicits. In: ACM SIGGRAPH 2003, pp. 463–470 (2003)

    Chapter  Google Scholar 

  23. Ohtake, Y., Belyaev, A., Seidel, H.P.: A multi-scale approach to 3d scattered data interpolation with compactly supported basis functions. In: Proc. Intl. Conf. Shape Modeling 2003, pp. 153–161 (2003)

    Chapter  Google Scholar 

  24. Pan, R.J., Meng, X.X., Whangbo, T.: Hermite variational implicit surface reconstruction. Sci. China Ser. F 52(2), 308–315 (2009)

    Article  MATH  Google Scholar 

  25. Paulsen, R.R., Bærentzen, J.A., Larsen, R.: Markov random field surface reconstruction. IEEE Trans. Vis. Comput. Graph., 16(4), 636–646 (2010)

    Article  Google Scholar 

  26. Saleem, W., Schall, O., Patane, G., Belyaev, A., Seidel, H.: On stochastic methods for surface reconstruction. Vis. Comput. 23(6), 381–395 (2007)

    Article  Google Scholar 

  27. Samozino, M., Alexa, M., Alliez, P., Yvinec, M.: Reconstruction with Voronoi centered radial basis functions. In: Eurographics Symposium on Geometry Processing 2006, pp. 51–60 (2006)

    Google Scholar 

  28. Sharf, A., Lewiner, T., Shklarski, G., Toledo, S., Cohen-Or, D.: Interactive topology-aware surface reconstruction. ACM Trans. Graph. 26(3), 431–439 (2007)

    Article  Google Scholar 

  29. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM SIGGRAPH 2006, pp. 835–846 (2006)

    Chapter  Google Scholar 

  30. Stanford 3D Scanning Repository: http://graphics.stanford.edu/data/3Dscanrep/ (2011)

  31. trimesh2: http://www.cs.princeton.edu/gfx/proj/trimesh2/ (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjiang Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, R., Skala, V. Surface reconstruction with higher-order smoothness. Vis Comput 28, 155–162 (2012). https://doi.org/10.1007/s00371-011-0604-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0604-9

Keywords

Navigation