Visibility volumes for interactive path optimization THANKSREF="*" ID="*"This work was conducted when the first author was with the Indian Institute of Science. | The Visual Computer Skip to main content
Log in

Visibility volumes for interactive path optimization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We describe a real-time system that supports design of optimal flight paths over terrains. These paths either maximize view coverage or minimize vehicle exposure to ground. A volume-rendered display of multi-viewpoint visibility and a haptic interface assists the user in selecting, assessing, and refining the computed flight path. We design a three-dimensional scalar field representing the visibility of a point above the terrain, describe an efficient algorithm to compute the visibility field, and develop visual and haptic schemes to interact with the visibility field. Given the origin and destination, the desired flight path is computed using an efficient simulation of an articulated rope under the influence of the visibility gradient. The simulation framework also accepts user input, via the haptic interface, thereby allowing manual refinement of the flight path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Avila, R.S., Sobierajski, L.M.: A haptic interaction method for volume visualization. In: Proceedings of IEEE Visualization, pp. 197–204. IEEE Press, Washington, DC (1996)

    Google Scholar 

  2. Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point on a terrain. In: Arge, L., Italiano, G.F., Sedgewick, R. (eds.) Proceedings of 6th Workshop on Algorithm Engineering and Experiments and the 1st Workshop on Analytic Algorithmics and Combinatorics (ALENEX-04), pp. 120–128. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  3. Bittner, J., Wonka, P.: Visibility in computer graphics. J. Environ. Plann B Plann Des. 5(30), 729–756 (2003)

    Article  Google Scholar 

  4. Bryson, S.: Virtual reality in scientific visualization. Commun. ACM 39(5), 62–71 (1996)

    Article  Google Scholar 

  5. Cohen-Or, D., Chrysanthou, Y., Silva, C., Durand, F.: A survey of visibility for walkthrough applications. IEEE Trans. Visual. Comput. Graph. 9(3), 412–431 (2003)

    Article  Google Scholar 

  6. Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. J. Symb. Comput. 7(1), 11–30 (1989)

    Article  MathSciNet  Google Scholar 

  7. Cruz-Neira, C., Leigh, J., Barnes, C., Choen, S., Das, S., Englemann, R., Hudson, R., Papka, M., Siegel, L., Vasilakis, C., Sandin, D.J., Defenti, T.A.: Scientists in wonderland: a report on visualization applications in the CAVE virtual reality environment. In: Proceedings of IEEE Symposium Research Frontiers in Virtual Reality, pp. 59–67. IEEE Press, Washington, DC (1993)

    Chapter  Google Scholar 

  8. van Dam, A., Forsberg, A.S., Laidlaw, D.H., LaViola, J.J.L., Simpson, R.M.: Immersive VR for scientific visualization: a progress report. IEEE Comput. Graph. Appl. 20(6), 26–52 (2000)

    Article  Google Scholar 

  9. Donald, B.R., Henle, F.: Using haptic vector fields for animation motion control. In: International Conference Robotics and Automation, pp. 3435–3442. IEEE Press, Washington, DC (2000)

    Google Scholar 

  10. Durlach, N.I., Mavor, A.S. (eds.): Virtual Reality: Scientific and Technological Challenges. National Academy Press, Washington, DC (1995)

  11. Floriani, L.D., Magillo, P.: Algorithms for visibility computation on digital terrain models. In: Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing. ACM, New York (1996)

    Google Scholar 

  12. Floriani, L.D., Magillo, P.: Intervisibility on terrains. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographic Information Systems: Principles, Techniques, Managament and Applications, pp. 543–556. Wiley, New York (1999)

    Google Scholar 

  13. Franklin, W.R., Ray, C.K.: Higher isn’t necessarily better: visibility algorithms and experiments. In: Proceedings of the 6th International Symposium on Spatial Data Handling, vol. 2, pp. 751–763. Taylor and Francis, London (1994)

    Google Scholar 

  14. Lawrence, D.A., Pao, L.Y., Lee, C.D., Novoselov, R.Y.: Synergistic visual/haptic rendering modes for scientific visualization. IEEE Comput. Graph. Appl. 24(6), 22–30 (2004)

    Article  Google Scholar 

  15. Marzouqi, M.S., Jarvis, R.A.: New visibility-based path-planning approach for covert robotic navigation. In: Robotica, vol. 24, pp. 759–773. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  16. Mills, K., Fox, G., Heimbach, R.: Implementing an intervisibility analysis model on a parallel computing system. Comput. Geosci. 18(8), 1047–1054 (1992)

    Article  Google Scholar 

  17. Nagy, G.: Terrain visibility. Comput. Graph. 18(6), 763–773 (1994)

    Article  MathSciNet  Google Scholar 

  18. van Reimersdahl, T., Bley, F., Kuhlen, T., Bischof, C.H.: Haptic rendering techniques for the interactive exploration of CFD datasets in virtual environments. In: EGVE ’03: Proceedings of Workshop on Virtual Environments, pp. 241–246. Eurographics Association, Aire-la-Ville, Switzerland (2003)

    Chapter  Google Scholar 

  19. Srikanth, M.B., Mathias, P., Naidu, P., Poston, T., Ramachandra, R.: Real-time articulated rope simulation. J. Virtual Reality (2007). Under review

  20. Srinivasan, M.A., Basdogan, C.: Haptics in virtual environments: taxonomy, research status, and challenges. Comput. Graph. 21(4), 393–404 (1997)

    Article  Google Scholar 

  21. Stewart, A.J.: Fast horizon computation at all points of a terrain with visibility and shading applications. IEEE Trans. Visual. Comput. Graph. 4(1), 82–93 (1998)

    Article  Google Scholar 

  22. Teng, Y.A., Davis, L.S.: Visibility analysis on digital terrain models and its parallel implementation. Technical Report CAR-TR-625, Centre for Automation Research, University of Maryland, College Park (1992)

  23. Teng, Y.A., DeMenthon, D., Davis, L.S.: Stealth terrain navigation. IEEE Trans. Syst. Man Cybern. 23(1), 96–110 (1993)

    Article  Google Scholar 

  24. Teng, Y.A., Mount, D.M., Puppo, E., Davis, L.S.: Parallelizing and algorithm for visibility on polyhedral terrain. Int. J. Comput. Geometry Appl. 7(1/2), 75–84 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vasudevan, H., Srikanth, M.B., Manivannan, M.: Rendering stiffer walls: a hybrid haptic system using continuous and discrete time feedback. Adv. Robot. 21(11), 1323–1338 (2007)

    Article  Google Scholar 

  26. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)

    Article  Google Scholar 

  27. Yano, H., Yoshie, M., Iwata, H.: Development of a non-grounded haptic interface using the gyro effect. In: HAPTICS, pp. 32–39. IEEE Press, Washington, DC (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Natarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanth, M., Mathias, P., Natarajan, V. et al. Visibility volumes for interactive path optimization . Visual Comput 24, 635–647 (2008). https://doi.org/10.1007/s00371-008-0244-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0244-x

Keywords

Navigation