Multi-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearings | Engineering with Computers Skip to main content
Log in

Multi-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearings

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Bearing is one of the most fundamental components of rotary machinery, and its fatigue life is a crucial factor in designing. The design optimization of tapered roller bearing (TRB) is a complex design problem because various arrays of designing parameters and functional requirements should be fulfilled. Since there are many design variables and nonlinear constraints, presenting an optimal design of TRBs poses some challenges for metaheuristic algorithms. The Harris hawks optimization (HHO) algorithm is a robust nature-inspired method with unique exploitation and exploration phases due to its time-varying structure. However, this metaheuristic algorithm may still converge to local optima for more challenging problems such as the design of TRBs. Therefore, this study aims to improve the accuracy and efficiency of the shortcomings of this algorithm. The performance of the proposed algorithm is first evaluated for the TRB optimization problem. The TRB optimization design has nine design variables and 26 constraints because of geometrical dimensions and strength conditions. The productivity of the proposed method is compared with diverse metaheuristic algorithms in the literature. The results demonstrate the significant development of dynamic load capacity in comparison to the standard value. Furthermore, the enhanced version of the HHO algorithm presented in this study is benchmarked with various well-known engineering problems. For supplementary materials regarding algorithms in this research, readers can refer to https://aliasgharheidari.com.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://aliasgharheidari.com/SMA.html.

  2. https://aliasgharheidari.com/HGS.html.

  3. https://aliasgharheidari.com/RUN.html.

  4. https://aliasgharheidari.com/HHO.html.

References

  1. Jat A, Tiwari R (2020) Multi-objective optimization of spherical roller bearings based on fatigue and wear using evolutionary algorithm. J King Saud Univ-Eng Sci 32(1):58–68

    Google Scholar 

  2. Tiwari R, Sunil KK, Reddy R (2012) An optimal design methodology of tapered roller bearings using genetic algorithms. Int J Comput Methods Eng Sci Mech 13(2):108–127

    Article  Google Scholar 

  3. Senthil Kumaran S, Srinivasan K (2020) A review on life increment of tapered roller bearings. J Crit Rev 7(6):764–775

    Google Scholar 

  4. Bhowmick H, Choudhary RTG (2006) Quasi-static analysis of tapered roller bearings and comparison of bearing lives for different roller surface profiles. In: 2nd international congress on computational mechanics and simulation, 2006

  5. Hu Y et al (2021) Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Eng Fract Mech 245:107588

    Article  Google Scholar 

  6. Tiwari R, Chandran R (2013) Thermal based optimum design of tapered roller bearing through evolutionary Algorithm. In: Gas turbine India conference, vol 35161. American Society of Mechanical Engineers, p V001T05A021

  7. Kumar KS, Tiwari R, Prasad P (2009) An optimum design of crowned cylindrical roller bearings using genetic algorithms. J Mech Des. https://doi.org/10.1115/1.3116344

    Article  Google Scholar 

  8. Verma SK, Tiwari R (2020) Robust optimum design of tapered roller bearings based on maximization of fatigue life using evolutionary algorithm. Mech Mach Theory 152:103894

    Article  Google Scholar 

  9. Kalyan M, Tiwari R, Ahmad MS (2020) Multi-objective optimization in geometric design of tapered roller bearings based on fatigue, wear and thermal considerations through genetic algorithms. Sadhana. https://doi.org/10.1007/s12046-020-01385-3

    Article  Google Scholar 

  10. Choi D-H, Yoon K-C (2001) A design method of an automotive wheel-bearing unit with discrete design variables using genetic algorithms. J Trib 123(1):181–187

    Article  MathSciNet  Google Scholar 

  11. Chakraborty I et al (2003) Rolling element bearing design through genetic algorithms. Eng Optimiz 35(6):649–659

    Article  Google Scholar 

  12. Dandagwhal R, Kalyankar V (2019) Design optimization of rolling element bearings using advanced optimization technique. Arab J Sci Eng 44(9):7407–7422

    Article  Google Scholar 

  13. Panda S et al (2018) Re-examination for effect of ball race conformity on life of rolling element bearing using Metaheuristic. Int J Adv Mech Eng 8(1):285–294

    Google Scholar 

  14. Kang K et al (2019) Robust design optimization of an angular contact ball bearing under manufacturing tolerance. Struct Multidiscip Optim 60(4):1645–1665

    Article  MathSciNet  Google Scholar 

  15. Tiwari R, Waghole V (2015) Optimization of spherical roller bearing design using artificial bee colony algorithm and grid search method. Int J Comput Methods Eng Sci Mech 16(4):221–233

    Article  Google Scholar 

  16. Zhou Y et al (2019) Video coding optimization for virtual reality 360-degree source. IEEE J Select Topics Signal Process 14(1):118–129

    Article  Google Scholar 

  17. Wu C et al (2019) Differential received signal strength based RFID positioning for construction equipment tracking. Adv Eng Inf 42:100960

    Article  Google Scholar 

  18. Xue X et al (2020) Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans Cybernet. https://doi.org/10.1109/TCYB.2020.3036393

    Article  Google Scholar 

  19. Ding L et al (2020) Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain. IEEE Trans Rob 36(3):894–909

    Article  Google Scholar 

  20. Wu C et al (2020) Critical review of data-driven decision-making in bridge operation and maintenance. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2020.1833946

    Article  Google Scholar 

  21. Jiang Q et al (2017) Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Trans Multimedia 20(8):2035–2048

    Article  Google Scholar 

  22. Wang B et al (2021) A kind of improved quantum key distribution scheme. Optik 235:166628

    Article  Google Scholar 

  23. Yang Y et al (2015) New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J Nat Gas Sci Eng 27:496–503

    Article  Google Scholar 

  24. Bo W et al (2021) Malicious URLs detection based on a novel optimization algorithm. IEICE Trans Inf Syst 104(4):513–516

    Article  Google Scholar 

  25. Alam Z et al (2021) Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure. Struct Infrastruct Eng 17(1):86–102

    Article  Google Scholar 

  26. Zuo X et al (2020) The modeling of the electric heating and cooling system of the integrated energy system in the coastal area. J Coast Res 103(SI):1022–1029

    Article  Google Scholar 

  27. Zhu D et al (2019) Evaluating the vulnerability of integrated electricity-heat-gas systems based on the high-dimensional random matrix theory. CSEE J Power Energy Syst 6(4):878–889

    Google Scholar 

  28. Zhang Y et al (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97

    Article  Google Scholar 

  29. Yin F et al (2021) Multifidelity genetic transfer: an efficient framework for production optimization. SPE J. https://doi.org/10.2118/205013-PA

    Article  Google Scholar 

  30. Eshtay M, Faris H, Heidari AA, Ala’M AZ, Aljarah I (2021) AutoRWN: automatic construction and training of random weight networks using competitive swarm of agents. Neural Comput Appl 33(11):5507–5524

    Article  Google Scholar 

  31. Faris H et al (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks. Inf Fus 48:67–83

    Article  Google Scholar 

  32. Faris H et al (2019) Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst Appl 140:112898

    Article  Google Scholar 

  33. Lin A et al (2019) Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy k-Nearest neighbor classifier. Ieee Access 7:67235–67248

    Article  Google Scholar 

  34. Liu G et al (2020) Prediction optimization of cervical hyperextension injury: kernel extreme learning machines with orthogonal learning butterfly optimizer and broyden—Fletcher-Goldfarb-Shanno Algorithms. IEEE Access 8:119911–119930

    Article  Google Scholar 

  35. Liu G et al (2020) Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine. IEEE access 8:46895–46908

    Article  Google Scholar 

  36. Aljarah I et al (2020) Multi-verse optimizer: theory, literature review, and application in data clustering. In: Mirjalili S, Song-Dong J, Lewis A (eds) Nature-inspired optimizers: theories, literature reviews and applications. Springer International Publishing, Cham, pp 123–141

    Google Scholar 

  37. Bai B et al (2021) Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Inf Sci 546:42–59

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma X, Zhang K, Zhang L, Yao C, Yao J, Wang H et al (2021) Data-driven niching differential evolution with adaptive parameters control for history matching and uncertainty quantification. SPE J 26(02):993–1010

    Article  Google Scholar 

  39. Sun G, Li C, Deng L (2021) An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05708-1

    Article  Google Scholar 

  40. Zhao D et al (2020) Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2020.106510

    Article  Google Scholar 

  41. Hu J et al (2021) Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl-Based Syst 213:106684

    Article  Google Scholar 

  42. Shan W et al (2020) Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis. Know-Based Syst 214:106728

    Article  Google Scholar 

  43. Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323

    Article  Google Scholar 

  44. Yang Y et al (2021) hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Article  Google Scholar 

  45. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new Metaheuristic optimization algorithm. Inf Sci 540:131–159

    Article  MathSciNet  MATH  Google Scholar 

  46. Ahmadianfar I et al (2021) RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079

    Article  Google Scholar 

  47. Mafarja M et al (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. Nature-Inspired Optimizers. Springer, pp 47–67

    Google Scholar 

  48. Aljarah I et al (2020) Multi-verse optimizer: theory, literature review, and application in data clustering. Nat-Inspired Optimiz. https://doi.org/10.1007/978-3-030-12127-3_8

    Article  MathSciNet  Google Scholar 

  49. Heidari AA, Abbaspour RA, Chen H (2019) Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Appl Soft Comput 81:105521

    Article  Google Scholar 

  50. Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  51. Tu J et al (2021) Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance. Knowl-Based Syst 212:106642

    Article  Google Scholar 

  52. Abbasi A, Firouzi B, Sendur P (2019) On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks. Eng Comput. https://doi.org/10.1007/s00366-019-00892-0

    Article  Google Scholar 

  53. Singh P, Prakash S (2020) Optimizing multiple ONUs placement in Fiber-Wireless (FiWi) access network using Grasshopper and Harris Hawks Optimization Algorithms. Opt Fiber Technol 60:102357

    Article  Google Scholar 

  54. Izci D, Ekinci S, Demirören A, Hedley J (2020) HHO algorithm based PID controller design for aircraft pitch angle control system. In: 2020 International congress on human-computer interaction, optimization and robotic applications (HORA). IEEE, pp 1–6

  55. Ekinci S, Izci D, Hekimoğlu B (2020) PID speed control of DC motor using Harris hawks optimization algorithm. In: 2020 International conference on electrical, communication, and computer engineering (ICECCE). IEEE, pp 1–6

  56. Gupta S, Deep K, Heidari AA et al (2021) Harmonized salp chain-built optimization. Eng Comput 37:1049–1079. https://doi.org/10.1007/s00366-019-00871-5

    Article  Google Scholar 

  57. Firouzi B, Abbasi A, Sendur P (2021) Improvement of the computational efficiency of metaheuristic algorithms for the crack detection of cantilever beams using hybrid methods. Eng Optimiz. https://doi.org/10.1080/0305215X.2021.1919887

    Article  Google Scholar 

  58. Zhang Y et al (2020) Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing 430:185–212

    Article  Google Scholar 

  59. Song S et al (2020) Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2020.106425

    Article  Google Scholar 

  60. Ridha HM et al (2020) Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers Manag 209:112660

    Article  Google Scholar 

  61. Barshandeh S, Piri F, Sangani SR (2020) HMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Eng Comput. https://doi.org/10.1007/s00366-020-01120-w

    Article  Google Scholar 

  62. Gupta S et al (2020) Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis. Expert Syst Appl 158:113510

    Article  Google Scholar 

  63. Hu H et al (2020) An improved Harris’s hawks optimization for SAR target recognition and stock market index prediction. IEEE Access 8:65891–65910

    Article  Google Scholar 

  64. Abdel-Basset M, Ding W, El-Shahat D (2020) A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev. https://doi.org/10.1007/s10462-020-09860-3

    Article  Google Scholar 

  65. Shi B et al (2020) Predicting di-2-ethylhexyl phthalate toxicity: hybrid integrated harris hawks optimization with support vector machines. IEEE Access 8:161188–161202

    Article  Google Scholar 

  66. Wei Y et al (2020) Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian Barebone Harris hawks optimizer. IEEE Access 8:76841–76855

    Article  Google Scholar 

  67. Chen H et al (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur Gener Comput Syst 111:175–198

    Article  Google Scholar 

  68. Chen H et al (2020) Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J Clean Prod 244:118778

    Article  Google Scholar 

  69. Rodríguez-Esparza E et al (2020) An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428

    Article  Google Scholar 

  70. Elaziz MA et al (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. ApplSoft Comput J 95:106347

    Google Scholar 

  71. Li C et al (2021) Memetic Harris hawks optimization: developments and perspectives on project scheduling and QoS-aware web service composition. Expert Syst Appl 171:114529

    Article  Google Scholar 

  72. Ye H et al (2021) Diagnosing coronavirus disease 2019 (COVID-19): efficient Harris hawks-inspired fuzzy k-nearest neighbor prediction methods. IEEE Access 9:17787–17802

    Article  Google Scholar 

  73. Jiao S et al (2020) Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 203:117804. https://doi.org/10.1016/j.energy.2020.117804

    Article  Google Scholar 

  74. Liu Y et al (2020) Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models. Energy Convers Manag 223:113211. https://doi.org/10.1016/j.enconman.2020.113211

    Article  Google Scholar 

  75. Al-Betar MA et al (2020) Survival exploration strategies for Harris hawks optimizer. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114243

    Article  Google Scholar 

  76. Thaher T et al (2020) Binary Harris Hawks optimizer for high-dimensional, low sample size feature selection. Evolutionary machine learning techniques. Springer, pp 251–272

    Chapter  Google Scholar 

  77. Zhang Y et al (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput. https://doi.org/10.1007/s00366-020-01028-5

    Article  Google Scholar 

  78. Alabool HM et al (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05720-5

    Article  Google Scholar 

  79. IS 7461 (1993) In part 1: general plan of boundary dimentions for tapered roller bearings. Bureau of Indian Standards, New Dehli, India. https://archive.org/details/gov.in.is.7461.1.1993

  80. Harris TA (2001) Rolling bearing analysis. Wiley

    Google Scholar 

  81. IS 3824 (2003) In rolling bearings: dynamic load ratings and rating life. Bureau of Indian Standards, New Dehli, India. https://archive.org/details/gov.in.is.3824.2002

  82. Rao BR, Tiwari R (2007) Optimum design of rolling element bearings using genetic algorithms. Mech Mach Theory 42(2):233–250

    Article  MATH  Google Scholar 

  83. Group S (2005) SKF general catalogue 6000. AB SKF, Gothenburg

    Google Scholar 

  84. Zhang J, Qu G (2019) Physical unclonable function-based key sharing via machine learning for IoT security. IEEE Trans Industr Electron 67(8):7025–7033

    Article  Google Scholar 

  85. Chen Y et al (2021) Large group activity security risk assessment and risk early warning based on random forest algorithm. Pattern Recogn Lett 144:1–5

    Article  Google Scholar 

  86. Wang B et al (2019) Parallel LSTM-based regional integrated energy system multienergy source-load information interactive energy prediction. Complexity. https://doi.org/10.1155/2019/7414318

    Article  Google Scholar 

  87. Shi J, Lu Y, Zhang J (2019) Approximation attacks on strong PUFs. IEEE Trans Comput Aided Des Integr Circuits Syst 39(10):2138–2151

    Article  Google Scholar 

  88. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  89. Chen H et al (2019) An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Syst Appl 154:113018

    Article  Google Scholar 

  90. Mirjalili S (2016) SCA: a Sine Cosine Algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  91. Chen H et al (2019) An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers Manage 195:927–942

    Article  Google Scholar 

  92. Huang H et al (2020) Rationalized Sine Cosine optimization with efficient searching patterns. IEEE Access 8:61471–61490

    Article  Google Scholar 

  93. Zhou W et al (2020) Multi-core Sine Cosine optimization: methods and inclusive analysis. Expert Syst Appl 164:113974

    Article  Google Scholar 

  94. Barshandeh S, Haghzadeh M (2020) A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems. Eng Comput. https://doi.org/10.1007/s00366-020-00994-0

    Article  Google Scholar 

  95. Saha S, Mukherjee V (2018) A novel chaos-integrated symbiotic organisms search algorithm for global optimization. Soft Comput 22(11):3797–3816

    Article  Google Scholar 

  96. Xiang W-L, An M-Q (2013) An efficient and robust artificial bee colony algorithm for numerical optimization. Comput Oper Res 40(5):1256–1265

    Article  MathSciNet  MATH  Google Scholar 

  97. Luo J et al (2019) Multi-strategy boosted mutative whale-inspired optimization approaches. Appl Math Model 73:109–123

    Article  MathSciNet  MATH  Google Scholar 

  98. Yang X-S (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) International conference on unconventional computing and natural computation. Springer

    Google Scholar 

  99. Kler D et al (2017) PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm. Swarm Evol Comput 35:93–110

    Article  Google Scholar 

  100. Croes GA (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812

    Article  MathSciNet  MATH  Google Scholar 

  101. Deng Y, Liu Y, Zhou D (2015) An improved genetic algorithm with initial population strategy for symmetric TSP. Math Prob Eng. https://doi.org/10.1155/2015/212794

    Article  Google Scholar 

  102. Xiong L et al (2016) Improved stability and H∞ performance for neutral systems with uncertain Markovian jump. Nonlinear Anal Hybrid Syst 19:13–25

    Article  MathSciNet  MATH  Google Scholar 

  103. Xu Z et al (2020) Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis. Expert Syst Appl 150:113282

    Article  Google Scholar 

  104. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric. IEEE Trans Image Process 24(12):6062–6071

    Article  MathSciNet  MATH  Google Scholar 

  105. Zhang K et al (2021) History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE J. https://doi.org/10.2118/205340-PA

    Article  Google Scholar 

  106. Shida H et al (2020) MRMD2.0: a python tool for machine learning with feature ranking and reduction. Curr Bioinf 15(10):1213–1221

    Article  Google Scholar 

  107. Jiang Q et al (2018) Unified no-reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans Image Process 28(4):1866–1881

    Article  MathSciNet  Google Scholar 

  108. Zuo C et al (2015) Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt Lasers Eng 71:20–32

    Article  Google Scholar 

  109. Zuo C et al (2017) High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep 7(1):1–22

    Article  Google Scholar 

  110. Zhang J et al (2020) On a universal solution to the transport-of-intensity equation. Opt Lett 45(13):3649–3652

    Article  Google Scholar 

  111. Liu M et al (2021) Walnut fruit processing equipment: academic insights and perspectives. Food Eng Rev. https://doi.org/10.1007/s12393-020-09273-6

    Article  Google Scholar 

  112. Zhao J et al (2020) Efficient deployment with geometric analysis for mmWave UAV communications. IEEE Wirel Commun Lett 9(7):1115–1119

    Google Scholar 

  113. Xu S et al (2020) Computer vision techniques in construction: a critical review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09504-3

    Article  Google Scholar 

  114. Huang H et al (2020) Experimental investigation on rehabilitation of corroded RC columns with bsp and hpfl under combined loadings. J Struct Eng 146(8):04020157

    Article  Google Scholar 

  115. Sun Y et al (2020) Constraints hindering the development of high-rise modular buildings. Appl Sci 10(20):7159

    Article  Google Scholar 

  116. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  117. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  118. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933

    Article  MATH  Google Scholar 

  119. Ju Y, Shen T, Wang D (2020) Bonding behavior between reactive powder concrete and normal strength concrete. Construct Build Mater 242:118024

    Article  Google Scholar 

  120. Ewees AA, Abd-Elaziz M (2020) Performance analysis of chaotic multi-verse harris hawks optimization: a case study on solving engineering problems. Eng Appl Artif Intell 88:103370

    Article  Google Scholar 

  121. Zhang X, Zhao K, Niu Y (2020) Improved Harris hawks optimization based on adaptive cooperative foraging and dispersed foraging strategies. IEEE Access 8:160297–160314

    Article  Google Scholar 

  122. Moghdani R et al (2020) An improved volleyball premier league algorithm based on sine cosine algorithm for global optimization problem. Eng Comput. https://doi.org/10.1007/s00366-020-00962-8

    Article  Google Scholar 

  123. Pathak VK, Srivastava AK (2020) A novel upgraded bat algorithm based on cuckoo search and Sugeno inertia weight for large scale and constrained engineering design optimization problems. Eng Comput. https://doi.org/10.1007/s00366-020-01127-3

    Article  Google Scholar 

  124. Zhang H et al (2020) A multi-strategy enhanced salp swarm algorithm for global optimization. Eng Comput. https://doi.org/10.1007/s00366-020-01099-4

    Article  Google Scholar 

  125. Zhang Y, Zhou X, Shih PC (2020) Modified Harris Hawks optimization algorithm for global optimization problems. Arab J Sci Eng 45(12):10949–10974

    Article  Google Scholar 

  126. Gupta S, Deep K (2019) Enhanced leadership-inspired grey wolf optimizer for global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-019-00795-0

    Article  Google Scholar 

Download references

Acknowledgements

This paper results from the MSc thesis of the first name that defended his thesis successfully within the revision of this research. We acknowledge the supports of Ozyegin University. We also acknowledge reviewers’ comments and the editor’s efforts, which significantly enhanced this research’s excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Firouzi, B., Sendur, P. et al. Multi-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearings. Engineering with Computers 38 (Suppl 5), 4387–4413 (2022). https://doi.org/10.1007/s00366-021-01442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01442-3

Keywords