An efficient space-splitting method for simulating brain neurons by neuronal synchronization to control epileptic activity | Engineering with Computers Skip to main content
Log in

An efficient space-splitting method for simulating brain neurons by neuronal synchronization to control epileptic activity

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Controlling synchronization of neural networks in brain activity is an important issue in neurodevelopmental disorders such as epileptic seizures. In this paper, we propose an efficient numerical method to simulate nonlinear spatio-temporal neural dynamic models and their synchronizations. In this study, the generalized Lagrange Jacobi Gauss–Lobatto collocation method combined with Trotter operator splitting technique is employed. This method allows us to decouple the nonlinear partial differential equations of neural network models into independent linear algebraic equations of very small dimensions. Moreover, we examine different test cases to indicate the advantages of the proposed method in accuracy, computational cost, and complexity. It is shown that the computational complexity of the proposed method is much smaller than the complexity of pure spectral method. Finally, A GPU implementation is applied on the two dimensional models to accelerate the time consuming simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel A, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609–1612

    Google Scholar 

  2. Haken H (2013) Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition. Springer, Berlin

    MATH  Google Scholar 

  3. Kim B (2004) Performance of networks of artificial neurons: the role of clustering. Phys Rev E 69:045101

    Google Scholar 

  4. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Di-Lazzaro V, Brown P (2002) Movement-related changes in synchronization in the human basal ganglia. Brain 125(6):1235–1246

    Google Scholar 

  5. Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284

    Google Scholar 

  6. Lytton WW (2008) Computer modelling of epilepsy. Nat Rev Neurosci 9(8):626–637

    Google Scholar 

  7. Iqbal M, Rehan M, Hong K (2017) Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization. PLoS One 12(1):e0176986

    Google Scholar 

  8. Iqbal M, Rehan M, Hong K (2018) Robust adaptive synchronization of ring configured uncertain chaotic FitzHugh–Nagumo neurons under direction-dependent coupling. Front Neurorobot 12:6

    Google Scholar 

  9. Garcia P, Acosta A, Leiva H (2009) Synchronization conditions for master–slave reaction diffusion systems. Europhys Lett 88(6):60006

    Google Scholar 

  10. Kocarev L, Tsarev Z, Parlitz U (1997) Synchronizing spatiotemporal chaos of partial differential equations. Phys Rev Lett 79(1):51–54

    Google Scholar 

  11. Xu Z (2006) Synchronization of two discrete Ginzburg–Landau equations using local coupling. Int J Nonlinear Sci 1(1):19–29

    MathSciNet  MATH  Google Scholar 

  12. Ambrosio B, Aziz-Alaoui MA (2012) Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput Math Appl 64(5):934–943

    MATH  Google Scholar 

  13. Ambrosio B, Aziz-Alaoui MA, Phan VLE (2019) Large time behaviour and synchronization of complex networks of reactiondiffusion systems of Fitzhugh–Nagumo type. IMA J Appl Math 84(2):416–443

    MathSciNet  MATH  Google Scholar 

  14. Ratas I, Pyragas K (2012) Effect of high-frequency stimulation on nerve pulse propagation in the FitzHugh–Nagumo model. Nonlinear Dyn 67(4):2899–2908

    MathSciNet  Google Scholar 

  15. Kandel ER, Schwartz JH, Jessell TM, Jessell TM, Siegelbaum S, Hudspeth A (2000) Principles of neural science, vol 2. McGraw-hill, New York

    Google Scholar 

  16. FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. In: Schwan HP (ed) Biological engineering. McGraw Hill, New York

    Google Scholar 

  17. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in 335 the giant axon of loligo. J Physiol 116(4):473–496

    Google Scholar 

  18. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting, vol 2. The MIT Press, Cambridge

    Google Scholar 

  19. Murray J (2002) Mathematical biology I and II. Interdisciplinary applied mathematics. Springer, New York

    Google Scholar 

  20. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496

    Google Scholar 

  21. FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. Biol Eng 1:1–85

    Google Scholar 

  22. Hemami M, Parand K, Rad JA (2019) Numerical simulation of reactiondiffusion neural dynamics models and their synchronization/desynchronization: application to epileptic seizures. Comput Math Appl 78(11):3644–3677

    MathSciNet  MATH  Google Scholar 

  23. Winfree AT (1991) Rotating wave solutions of the FitzHugh–Nagumo equations. Chaos 1(3):303–334

    MathSciNet  Google Scholar 

  24. Barkley D (1991) A model for fast computer simulation of waves in excitable media. Phys D 49:61–70

    Google Scholar 

  25. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Google Scholar 

  26. Moghaderi H, Dehghan M (2017) Mixed two-grid finite difference methods for solving one-dimensional and two-dimensional FitzHugh–Nagumo equations. Math Methods Appl Sci 40:1170–1200

    MathSciNet  MATH  Google Scholar 

  27. Olmos D, Shizgal BD (2009) Pseudospectral method of solution of the Fitzhugh–Nagumo equation. Math Comput Simul 79:2258–2278

    MathSciNet  MATH  Google Scholar 

  28. Abbasbandy S (2008) Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Appl Math Model 32(12):2706–2714

    MathSciNet  MATH  Google Scholar 

  29. Motsa SS, Magagula VM, Sibanda P (2014) A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations. Sci World J 2014:1–13

    Google Scholar 

  30. Wazwaz A (2007) The tanhcoth method for solitons and kink solutions for nonlinear parabolic equations. Appl Math Comput 188:1467–1475

    MathSciNet  MATH  Google Scholar 

  31. Dehghan M, Heris JM, Saadatmandi A (2010) Application of semianalytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses. Adv Differ Equ 33(11):1384–1398

    MATH  Google Scholar 

  32. Bu W, Tang Y, Wu Y, Yang J (2015) Crank Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh–Nagumo monodomain model. Appl Math Comput 257:355–364

    MathSciNet  MATH  Google Scholar 

  33. Hariharan G, Rajaraman R (2013) Two reliable wavelet methods to Fitzhugh–Nagumo (FN) and fractional FN equations. Appl Math Comput 51:2432–2454

    MathSciNet  MATH  Google Scholar 

  34. Kumar D, Singh J, Baleanu D (2018) A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn 91(1):307–317

    MathSciNet  MATH  Google Scholar 

  35. Kumar S, Ahmadian A, Kumar R, Kumar D, Singh J, Baleanu D, Salimi M (2020) An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics 8(4):558

    Google Scholar 

  36. Singh J, Kilicman A, Kumar D, Swroop R (2019) Numerical study for fractional model of nonlinear predator-prey biological population dynamical system. Therm Sci 23(6):S2017–S2025

    Google Scholar 

  37. Kumar D, Singh J, Qurashi MA, Baleanu D (2019) A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Adv Differ Equ 278:1–19

    MathSciNet  Google Scholar 

  38. Kumar S, Kumar R, Singh J, Nisar K, Kumar D (2019) An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. Alex Eng J. https://doi.org/10.1016/j.aej.2019.12.046

    Article  Google Scholar 

  39. Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of turing models. Eng Anal Bound Elem 62:93–111

    MathSciNet  MATH  Google Scholar 

  40. Dehghan M, Narimani N (2018) Approximation of continuous surface differential operators with the generalized moving least-squares (GMLS) method for solving reaction-diffusion equation. Comput Appl Math 37:6955–6971

    MathSciNet  MATH  Google Scholar 

  41. Sabouri M, Dehghan M (2015) An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point. Comput Math Appl 70(10):2513–2541

    MathSciNet  MATH  Google Scholar 

  42. Ali MS, Shamsi M, Khosraviana-Arab H, Torres DFM, Bozorgnia F (2018) A space-time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives. J Vib Control 25:1080–1095 (In Press)

    MathSciNet  Google Scholar 

  43. Parand K, Latifi S, Moayeri MM, Delkhosh M (2018) Generalized Lagrange Jacobi Gauss–Lobatto (GLJGL) collocation method for solving linear and nonlinear Fokker–Planck equations. Commun Theor Phys 69:519

    MathSciNet  MATH  Google Scholar 

  44. Doha EH, Abdelkawy MA, Amin A, Lopes AM (2019) Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun Nonlinear Sci Numer Simul 72:342–359

    MathSciNet  MATH  Google Scholar 

  45. Parand K, Razzaghi M (2004) Rational Chebyshev tau method for solving Volterra’s population model. Appl Math Comput 149(3):893–900

    MathSciNet  MATH  Google Scholar 

  46. Mason JC, Handscomb DC (2002) Chebyshev polynomials. CRC Press Company, Baco Raton

    MATH  Google Scholar 

  47. Doha EH, Bhrawy AH, Ezz-Eldien SS (2011) A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput Math Appl 62(5):2364–2373

    MathSciNet  MATH  Google Scholar 

  48. Herat SMH, Babolian E, Abbasbandy S (2018) Numerical study of unsteady flow of gas through a porous medium by means of Chebyshev pseudo-spectral method. I. J Ind Math 10(3):229–236

    Google Scholar 

  49. Baseri A, Abbasbandy S, Babolian E (2018) A collocation method for fractional diffusion equation in a long time with Chebyshev functions. Appl Math Comput 322:55–65

    MathSciNet  MATH  Google Scholar 

  50. Dehestani H, Ordokhani Y, Razzaghi M (2018) Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Appl Math Comput 336:433–453

    MathSciNet  MATH  Google Scholar 

  51. Banifatemi E, Razzaghi M, Yousefi S (2007) Two-dimensional Legendre wavelets method for the mixed Volterra–Fredholm integral equations. J Vib Control 13(11):1667–1675

    MathSciNet  MATH  Google Scholar 

  52. Erfani S, Babolian E, Javadi S, Shamsi M (2019) Stable evaluations of fractional derivative of the Muntz–Legendre polynomials and application to fractional differential equations. J Comput Appl Math 348:70–88

    MathSciNet  MATH  Google Scholar 

  53. Sabeh Z, Shamsi M, Dehghan M (2016) Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. Math Methods Appl Sci 39(12):3350–3360

    MathSciNet  MATH  Google Scholar 

  54. Rahimkhani P, Ordokhani Y (2018) Numerical solution a class of 2D fractional optimal control problems by using 2D Muntz–Legendre wavelets. Optim Control Appl Methods 39(6):1916–1934

    MATH  Google Scholar 

  55. Abbasbandy S, Kazem S, Alhuthali MS, Alsulami HH (2015) Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection–diffusion equation. Appl Math Comput 266:31–40

    MathSciNet  MATH  Google Scholar 

  56. Ashpazzadeh E, Lakestani M, Razzaghi M (2018) Nonlinear constrained optimal control problems and cardinal Hermite interpolant multiscaling functions. Asian J Control 20(1):558–567

    MathSciNet  MATH  Google Scholar 

  57. Doha EH, Ahmed HM, El-Soubhy SI (2009) Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials and their integrals. Int Trans Spec Funct 20(7):491–503

    MathSciNet  MATH  Google Scholar 

  58. Ezz-Eldien SS, Doha EH, Baleanu D, Bhrawy AH (2017) A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J Vib Control 23:16–30

    MathSciNet  MATH  Google Scholar 

  59. Ashpazzadeh E, Lakestani M, Razzaghi M (2017) Cardinal Hermite interpolant multiscaling functions for solving a parabolic inverse problem. Turk J Math 41:1009–1026

    MathSciNet  MATH  Google Scholar 

  60. Abbasbandy S, Hayat T, Ghehsareh HR, Alsaedi A (2013) MHD Falkner–Skan flow of Maxwell fluid by rational Chebyshev collocation method. Appl Math Comput 34(8):921–930

    MathSciNet  Google Scholar 

  61. Rahimkhani P, Ordokhani Y, Babolian E (2018) Muntz–Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer Algorithm 77(4):1283–1305

    MATH  Google Scholar 

  62. Rahimkhani P, Ordokhani Y (2019) Generalized fractional-order Bernoulli–Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems. IMA J Math Control Inf 36(1):185–212

    MathSciNet  MATH  Google Scholar 

  63. Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37(7):5498–5510

    MathSciNet  MATH  Google Scholar 

  64. Rad JA, Parand K, Abbasbandy S (2015) Pricing European and American options using a very fast and accurate scheme: the meshless local Petrov–Galerkin method. Proc Natl Acad Sci India Sect A Phys Sci 85(3):337–351

    MathSciNet  MATH  Google Scholar 

  65. Rad JA, Parand K (2017) Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov–Galerkin method. Appl Numer Math 115:252–274

    MathSciNet  MATH  Google Scholar 

  66. Kazem S, Shaban M, Rad JA (2012) Solution of the coupled Burgers equation based on operational matrices of d-dimensional orthogonal functions. Zeitschrift fr Naturforschung A 67(5):267–274

    Google Scholar 

  67. Peaceman DW, Rachford HH (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3(1):28–41

    MathSciNet  MATH  Google Scholar 

  68. Ballestra LV, Sgarra C (2010) The evaluation of American options in a stochastic volatility model with jumps: an efficient finite element approach. Comput Math Appl 60(6):1571–1590

    MathSciNet  MATH  Google Scholar 

  69. Dehghan M, Abbaszadeh M (2018) The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations. Alex Eng J 57(2):1137–1156

    Google Scholar 

  70. Ikonen S, Toivanen J (2009) Operator splitting methods for pricing American options under stochastic volatility. Numer Math 113:299–324

    MathSciNet  MATH  Google Scholar 

  71. Toivanen J (2010) A componentwise splitting method for pricing American options under the Bates model. In: Fitzgibbon W, Kuznetsov Y, Neittaanmaki P, Periaux J, Pironneau O (eds) Applied and numerical partial differential equations: scientific computing. Simulation, optimization and control in a multidisciplinary context, in, computational methods in applied sciences, vol 15. Springer, Berlin, pp 213–227

    Google Scholar 

  72. Chiarella C, Kang B, Meyer G, Ziogas A (2009) The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines. I. J Theor Appl Finance 12(3):393–425

    MathSciNet  MATH  Google Scholar 

  73. Holden H, Karlsen KH, Lie KA, Risebro NH (2010) Splitting methods for partial differential equations with rough solutions: analysis and Matlab programs. European Mathematical Society, Zurich

    MATH  Google Scholar 

  74. Seydaoglu M, Erdogan U, Ozis T (2016) Numerical solution of Burgers equation with high order splitting methods. J Comput Appl Math 291:410–421

    MathSciNet  MATH  Google Scholar 

  75. Seydaoglu M, Blanes S (2014) High-order splitting methods for separable non-autonomous parabolic equations. Appl Numer Math 84:22–32

    MathSciNet  MATH  Google Scholar 

  76. Dehghan M (2007) Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36(5/6):791–805

    MATH  Google Scholar 

  77. Dehghan M, Taleei A (2010) A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients. Comput Phys Commun 181(1):43–51

    MathSciNet  MATH  Google Scholar 

  78. Dehghan M (2003) Fractional step methods for parabolic equations with a non-standard condition. App Math Comput 142(1):177–187

    MathSciNet  MATH  Google Scholar 

  79. Abbaszadeh M, Dehghan M (2020) An upwind local radial basis functions-differential quadrature (RBFs-DQ) technique to simulate some models arising in water sciences. Ocean Eng 197:106844

    Google Scholar 

  80. Taleei A, Dehghan M (2014) Time-splittingpseudo-spectral domain decomposition method for the soliton solutions of the one- and multi- dimensional nonlinear schrdinger equations. Comput Phys Commun 185(6):1515–1528

    MathSciNet  MATH  Google Scholar 

  81. Shen J, Tang T (2006) Spectral and high-order methods with applications. Science Press of China, Beijing

    MATH  Google Scholar 

  82. Shen J, Tang T, Wang L (2011) Spectral methods algorithms. Analyses and applications. Springer, Berlin

    Google Scholar 

  83. Rasanan AHH, Bajelan N, Parand K, Rad JA (2019) Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network. Math Methods Appl Sci 43(3):1437–1466

    MathSciNet  MATH  Google Scholar 

  84. Stoer J, Bulirsch R (2013) Introduction to numerical analysis. Springer, Berlin

    MATH  Google Scholar 

  85. Delkhosh M, Parand K (2019) Generalized pseudospectral method: theory and applications. J Comput Sci 34:11–32

    MathSciNet  MATH  Google Scholar 

  86. Alford JG, Auchmuty G (2006) Rotating wave solutions of the FitzHugh–Nagumo equations. J Math Biol 53:797–819

    MathSciNet  MATH  Google Scholar 

  87. Gomatam J, Amdjadi F (1997) Reaction–diffusion equations on a sphere: meandering of spiral waves. Phys Rev E 56(4):3913–3919

    MathSciNet  Google Scholar 

  88. Dahlem MA, Muller SC (2004) Reaction–diffusion waves in neuronal tissue and the window of cortical excitability. Ann Phys 13(7–8):442–449

    MathSciNet  MATH  Google Scholar 

  89. Barkley D (1995) Spiral meandering. In: Kapral R, Showalter K (eds) Chemical waves and patterns. Springer, Berlin, pp 163–189

    Google Scholar 

  90. Chen F (2015) A new framework of GPU-Accelerated spectral solvers: collocation and glerkin methods for systems of coupled elliptic equations. J Sci Comput 62(2):575–600

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to reviewers for carefully reading this paper and for their comments and suggestions, which have improved the quality of the paper. Also they are grateful to High Performance Computing (HPC) laboratory in IPM to provided us the suitable GPU for simulations. The corresponding author’s work was partially supported by Center of Excellence in Cognitive Neuropsychology (CECN). He sincerely thanks to CECN for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Rad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayeri, M.M., Hadian-Rasanan, A.H., Latifi, S. et al. An efficient space-splitting method for simulating brain neurons by neuronal synchronization to control epileptic activity. Engineering with Computers 38, 819–846 (2022). https://doi.org/10.1007/s00366-020-01086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01086-9

Keywords

Mathematics subject classification

Navigation