Abstract
A cellular automaton is a dynamical system on an infinite array of cells defined by a local update rule that is applied simultaneously at all cells. By carefully choosing the update rule, the global dynamics can be made information preserving. In this case, the cellular automaton is called reversible. In this article, we explain fundamental classical results concerning reversible cellular automata and discuss some more recent developments on selected topics. Classical results reviewed include the Curtis–Hedlund–Lyndon theorem, the Garden-of-Eden theorem and the invariance of uniform Bernoulli distribution under reversible cellular automata. We then describe several techniques to construct reversible cellular automata and a method to determine whether a given one-dimensional automaton is reversible. We present undecidability issues concerning reversible cellular automata and discuss three types of universality: computational universality, intrinsic universality, and physical universality. We finish with short notes about time symmetry, expansiveness, and conservation laws.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kari, J.: Reversible cellular automata. Developments in language theory. Lecture Notes in Computer Science, vol. 3572, pp. 57–68. Springer, Berlin (2005)
Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334(1–3), 3–33 (2005)
Morita, K.: Reversible computing and cellular automata–a survey. Theoret. Comput. Sci. 395(1), 101–131 (2008)
Morita, K.: Theory of Reversible Computing, Monographs in Theoretical Computer Science, An EATCS Series. Springer, New York (2017)
Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical systems. Math. Syst. Theory 3(4), 320–375 (1969)
Richardson, D.: Tessellations with local transformations. J. Comput. Syst. Sci. 6(5), 373–388 (1972)
Moore, E.F.: Machine models of self-reproduction. Proc. Symp. Appl. Math. 14, 17–33 (1963)
Myhill, J.: The converse to Moore’s garden-of-eden theorem. Proc. Am. Math. Soc. 14, 685–686 (1963)
Berlekamp, E., Conway, J., Guy, R.: Winning Ways, for Your Mathematical Plays: Games in Particular. vol. 2. Academic (1982)
Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American 223, 120–123 (1970)
Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Monographs in Mathematics. Springer, Berlin (2010)
Gottschalk, W.: Some general dynamical notions. In: Recent Advances in Topological Dynamics, Lecture Notes in Mathematics, vol. 318, pp. 120–125. Springer, New York (1973)
Kari, J.: Universal pattern generation by cellular automata. Theoret. Comput. Sci. 429, 180–184 (2012)
Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. IEICE Trans. E 72(6), 758–762 (1989)
Kari, J.: Representation of reversible cellular automata with block permutations. Math. Syst. Theory 29(1), 47–61 (1996)
Kari, J.: On the circuit depth of structurally reversible cellular automata. Fundamenta Informaticae 38(1–2), 93–107 (1999)
Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Phys. D 45, 229–253 (1990)
Margolus, N.: Physics-like models of computation. Phys. D Nonlinear Phenom. 10(1), 81–95 (1984)
Hardy, J., Pomeau, Y., de Pazzis, O.: Time evolution of a two-dimensional classical lattice system. Phys. Rev. Lett. 31, 276–279 (1973)
Vichniac, G.Y.: Simulating physics with cellular automata. Phys. D Nonlinear Phenom. 10(1–2), 96–116 (1984)
Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comput. Syst. Sci. 6(5), 448–464 (1972)
Kari, J.: Reversibility of 2D cellular automata is undecidable. Phys. D Nonlinear Phenom. 45(1), 379–385 (1990)
Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48(1), 149–182 (1994)
Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Syst. 5(1), 19–30 (1991)
Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular automata. In: Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pp. 410–420 (2005)
Kari, J.: Snakes and cellular automata: Reductions and inseparability results. In: Kulikov, A., Vereshchagin, N. (eds.) Computer Science—Theory and Applications, pp. 223–232. Springer, Berlin (2011)
Boyle, M.: Open problems in symbolic dynamics. Geometric and Probabilistic Structures in Dynamics. Contemporary Mathematics, vol. 469, pp. 69–118. American Mathematical Society, Providence (2008)
Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) Mathematical Foundations of Computer Science 2008, pp. 419–430. Springer, Berlin (2008)
Delacourt, M., Ollinger, N.: Permutive one-way cellular automata and the finiteness problem for automaton groups. In: J. Kari, F. Manea, I. Petre (eds.) Unveiling Dynamics and Complexity, pp. 234–245. Springer International Publishing (2017)
Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1) (2004)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
Lecerf, Y.: Machines de Turing réversibles. Récursive insolubilité en \(n\in {N}\) de l’équation \(u=\theta ^n u\), où \(\theta\) est un “isomorphisme de code”. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 257, 2597–2600 (1963)
Morita, K.: Universality of a reversible two-counter machine. Theoret. Comput. Sci. 168(2), 303–320 (1996)
Toffoli, T.: Computation and construction universality of reversible cellular automata. J. Comput. Syst. Sci. 15(2), 213–231 (1977)
Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoret. Comput. Sci. 148(1), 157–163 (1995)
Dubacq, J.C.: How to simulate Turing machines by invertible one-dimensional cellular automata. Int. J. Found. Comput. Sci. 6(4), 395–402 (1995)
Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking i: An abstract theory of bulking. Theoretical Computer Science 412(30), 3866–3880 (2011) (Cellular Automata and Discrete Complex Systems)
Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking ii: Classifications of cellular automata. Theoretical Computer Science 412(30), 3881–3905 (2011) (Cellular Automata and Discrete Complex Systems)
Ollinger, N.: Universalities in cellular automata. In: Rozenberg et al. [54], pp. 189–229
Durand-Lose, J.: Computing inside the billiard ball model. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 135–160. Springer, London (2002)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21(3), 219–253 (1982)
Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: R. Reischuk, M. Morvan (eds.) STACS 97, 14th Annual Symposium on Theoretical Aspects of Computer Science, Lübeck, Germany, February 27 - March 1, 1997, Proceedings Lecture Notes in Computer Science, vol. 1200, pp. 439–450. Springer (1997)
Janzing, D.: Is there a physically universal cellular automaton or hamiltonian? (2010)
Schaeffer, L.: A physically universal cellular automaton. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS ’15, pp. 237–246. ACM, New York (2015)
Salo, V., Törmä, I.: A one-dimensional physically universal cellular automaton. In: J. Kari, F. Manea, I. Petre (eds.) Unveiling Dynamics and Complexity, pp. 375–386. Springer International Publishing (2017)
Moreira, A., Gajardo, A.: Time-symmetric cellular automata. In: J. Kari (ed.) Proceedings of JAC 2010, Journées Automates Cellulaires, pp. 180–190. TUCS, Turku Centre for Computer Science (2010)
Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J. Comput. Syst. Sci. 78(4), 1115–1126 (2012)
Shereshevsky, M.A.: Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indagationes Mathematicae 4(2), 203–210 (1993)
Hattori, T., Takesue, S.: Additive conserved quantities in discrete-time lattice dynamical systems. Phys. D Nonlinear Phenom. 49(3), 295–322 (1991)
Formenti, E., Kari, J., Taati, S.: On the hierarchy of conservation laws in a cellular automaton. Nat. Comput. 10(4), 1275–1294 (2011)
Kari, J., Taati, S.: Statistical mechanics of surjective cellular automata. J. Stat. Phys. 160(5), 1198–1243 (2015)
Kari, J., Taati, S.: Conservation laws and invariant measures in surjective cellular automata. In: N. Fatès, E.G. Chacc, A. Maass, I. Rapaport (eds.) AUTOMATA, Discrete Mathematics and Theoretical Computer Science Proceedings, vol. AP, pp. 113–122. DMTCS (2011)
Kari, J.: Basic concepts of cellular automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. 1, pp. 3–24. Springer, New York (2010)
Kůrka, P.: Topological and Symbolic Dynamics. Collection SMF, Société mathématique de France (2003)
Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT press (1987)
Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by the Academy of Finland Grant 296018.
About this article
Cite this article
Kari, J. Reversible Cellular Automata: From Fundamental Classical Results to Recent Developments. New Gener. Comput. 36, 145–172 (2018). https://doi.org/10.1007/s00354-018-0034-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-018-0034-6