Micromagnetics of Galfenol | Journal of Nonlinear Science Skip to main content

Advertisement

Log in

Micromagnetics of Galfenol

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the micromagnetics of soft cubic ferromagnets with large magnetostriction, with the goal of understanding the microstructure and behavior of recently reported single-crystal Galfenol samples [Chopra and Wuttig in Nature 521(7552):340–343, 2015]. First, taking the no-exchange formulation of the micromagnetics energy [De Simone and James in J Mech Phys Solids 50(2):283–320, 2002], we construct minimizing sequences that yield local average magnetization and strain curves matching the experimental findings of Chopra and Wuttig (2015). Then, reintroducing a sharp-interface version of the exchange energy [Choksi and Kohn in Commun Pure Appl Math 51(3):259–289, 1998], we construct normal and zig-zag Landau states; within the parameter regime of Galfenol, we show that the latter achieves lower-energy scaling via equipartition of energy between the \(90^\circ \) wall energy, \(180^\circ \) wall energy and the anisotropy energy. This forms the first step in adapting the program of Kohn and Müller [Philos Mag A 66(5):697–715, 1992] to explain why certain magnetic microstructures are observed over others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bhattacharya, K.: Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, vol. 2. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  • Choksi, R., Kohn, R.V.: Bounds on the micromagnetic energy of a uniaxial ferromagnet. Commun. Pure Appl. Math. 51(3), 259–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201(1), 61–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Chopra, H.D., Wuttig, M.: Non-joulian magnetostriction. Nature 521(7552), 340–343 (2015)

    Article  Google Scholar 

  • Clark, A.E., Hathaway, K.B., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Keppens, V.M., Petculescu, G., Taylor, R.A.: Extraordinary magnetoelasticity and lattice softening in BCC Fe-Ga alloys. J. Appl. Phys. 93(10), 8621–8623 (2003)

    Article  Google Scholar 

  • Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53(11), 1448–1474 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, London (2011)

    Google Scholar 

  • De Simone, A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125(2), 99–143 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • De Simone, A., James, R.D.: A constrained theory of magnetoelasticity. J. Mech. Phys. Solids 50(2), 283–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • De Simone, A., Kohn, R.V., Müller, S., Otto, F., Schäfer, R.: Low energy domain patterns in soft ferromagnetic films. J. Magn. Magn. Mater. 242, 1047–1051 (2002)

    Article  Google Scholar 

  • Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations, vol. 74. American Mathematical Society(1990)

  • He, Y., Jiang, C., Wei, W., Wang, B., Duan, H., Wang, H., Zhang, T., Wang, J., Liu, J., Zhang, Z.: Giant heterogeneous magnetostriction in Fe–Ga alloys: effect of trace element doping. Acta Mater. 109, 177–186 (2016)

    Article  Google Scholar 

  • Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (2008)

    Google Scholar 

  • James, R.D., Kinderlehrer, D.: Frustration in ferromagnetic materials. Contin. Mech. Thermodyn. 2(3), 215–239 (1990)

    Article  MathSciNet  Google Scholar 

  • James, R.D., Wuttig, M.: Magnetostriction of martensite. Philos. Mag. A 77(5), 1273–1299 (1998)

    Article  Google Scholar 

  • Kohn, R.V.: Energy-driven pattern formation. In: International Congress of Mathematicians, vol. 1, pp. 359–383 (2006)

  • Kohn, R.V., Müller, S.: Branching of twins near an austenite–twinned–martensite interface. Philos. Mag. A 66(5), 697–715 (1992)

    Article  Google Scholar 

  • Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47(4), 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, B.: The permalloy problem and magnetic annealing in bulk nickel–iron alloys. Br. J. Appl. Phys. 15(4), 407 (1964)

    Article  Google Scholar 

  • Lifshitz, E.: On the magnetic structure of iron. Z. Eksp. Teor. Fiziki 15(3), 97–107 (1945)

    Google Scholar 

  • Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  • Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11–12), 351 (1945)

    Article  Google Scholar 

  • Rafique, S., Cullen, J.R., Wuttig, M., Cui, J.: Magnetic anisotropy of FeGa alloys. J. Appl. Phys. 95(11), 6939–6941 (2004)

    Article  Google Scholar 

  • Tartar, L.: On mathematical tools for studying partial differential equations of continuum physics: H-measures and young measures. In: Buttazzo, G., Galdi, G.P., Zanghirati, L. (eds.) Developments in Partial Differential Equations and Applications to Mathematical Physics, pp. 201–217. Springer US, Boston, MA (1992)

  • Tartar, L.: Beyond young measures. Meccanica 30(5), 505–526 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Van den Berg, H.A.M.: Self-consistent domain theory in soft-ferromagnetic media. II. Basic domain structures in thin-film objects. J. Appl. Phys. 60(3), 1104–1113 (1986)

    Article  Google Scholar 

  • Venkatraman, R., Dabade, V., James, R.D.: Bounds on the energy of acubic ferromagnet (2018, in preparation)

  • Zhang, J.X., Chen, L.Q.: Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 53(9), 2845–2855 (2005)

    Article  Google Scholar 

  • Zhang, Z., James, R.D., Müller, S.: Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57(15), 4332–4352 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of the Ph.D. dissertation of VD, and he was supported by a Doctoral Dissertation Fellowship provided by the Graduate School of the University of Minnesota. RV thanks his Ph.D. thesis advisers Professors Peter Sternberg and Dmitry Golovaty for their support and encouragement. He acknowledges the support from NSF DMS-1101290 and NSF DMS-1362879 and the Indiana University College of Arts and Sciences Dissertation Year Fellowship. The work of RDJ was supported by NSF (DMREF-1629026), and it also benefitted from the support of ONR (N00014-14-1-0714), AFOSR (FA9550-15-1-0207) and the MURI Program (FA9550-12-1-0458, FA9550-16-1-0566). Also, we would like to thank the anonymous referees for their detailed comments that considerably increased the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekanand Dabade.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabade, V., Venkatraman, R. & James, R.D. Micromagnetics of Galfenol. J Nonlinear Sci 29, 415–460 (2019). https://doi.org/10.1007/s00332-018-9492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9492-8

Keywords

Mathematics Subject Classification

Navigation