Communication and Collective Consensus Making in Animal Groups via Mechanical Interactions | Journal of Nonlinear Science
Skip to main content

Communication and Collective Consensus Making in Animal Groups via Mechanical Interactions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Mechanical constraints have a strong influence on the dynamics and structure of granular aggregations. The contact forces within dense suspensions of active particles may give rise to intriguing phenomena, including anomalous density fluctuations, long-range orientational ordering, and spontaneous pattern formation. Various authors have proposed that these physical phenomena contribute to the ability of animal groups to move coherently. Our systematic numerical simulations confirm that spontaneous interactions of elongated individuals can trigger oriented motion in small groups. They are, however, insufficient in larger ones, despite their significant imprint on the group’s internal structure. It is also demonstrated that preferred directions of motion of a minority of group members can be communicated to others solely by mechanical interactions. These findings strengthen the link between pattern formation in active nematics and the collective decision making of social animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, A., Marchetti, M.C., Liverpool, T.B.: Hydrodynamics of isotropic and liquid crystalline active polymer solutions. Phys. Rev. E 74, 061913 (2006)

    Article  Google Scholar 

  • Aranson, I.S., Volfson, D., Tsimring, L.S.: Swirling motion in a system of vibrated elongated particles. Phys. Rev. E 75, 051301 (2007)

    Article  Google Scholar 

  • Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105, 1232–1237 (2008)

    Article  Google Scholar 

  • Baruh, H.: Analytical Dynamics. WCB McGraw-Hill, New York (1999)

    Google Scholar 

  • Baskaran, A., Marchetti, M.C.: Enhanced diffusion and ordering of self-propelled rods. Phys. Rev. Lett. 101, 268101 (2008)

    Article  Google Scholar 

  • Blair, D.L., Neicu, T., Kudrolli, A.: Vortices in vibrated granular rods. Phys. Rev. E 67, 031303 (2003)

    Article  Google Scholar 

  • Chaté, H., Ginelli, F., Montagne, R.: Simple model for active nematics: quasi-long-range order and giant fluctuations. Phys. Rev. Lett. 96, 180602 (2006)

    Article  Google Scholar 

  • Chowdhury, D.: Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Transit. 77, 601–624 (2004)

    Article  Google Scholar 

  • Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  • Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision making in animal groups on the move. Nature 433, 513–516 (2005)

    Article  Google Scholar 

  • Derzsi, A., Szőllősi, G., Vicsek, T.: The minimalist’s model for collective motion. Unpublished

  • Deseigne, J., Dauchot, O., Chaté, H.: Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010)

    Article  Google Scholar 

  • D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302 (2006)

    Article  Google Scholar 

  • Flierl, G., Grünbaum, D., Levins, S., Olson, D.: From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol. 196, 397–454 (1999)

    Article  Google Scholar 

  • Galanis, J., Harries, D., Sackett, D.L., Losert, W., Nossal, R.: Spontaneous patterning of confined granular rods. Phys. Rev. Lett. 96, 028002 (2006)

    Article  Google Scholar 

  • Grégoire, G., Chaté, H., Tu, Y.: Moving, and staying together without a leader. Physica D 181, 157–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Grossman, D., Aranson, I.S., Ben Jacob, E.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10, 023036 (2008)

    Article  Google Scholar 

  • Kluyver, J.C.: A local probability problem. Ned. Akad. Wet. Proc. 8, 341–350 (1906)

    Google Scholar 

  • Kraikivski, P., Lipowsky, R., Kierfeld, J.: Enhanced ordering of interacting filaments by molecular motors. Phys. Rev. Lett. 96, 258103 (2006)

    Article  Google Scholar 

  • Kudrolli, A., Lumay, G., Volfson, D., Tsimring, L.S.: Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008)

    Article  Google Scholar 

  • Levine, H., Rappel, W.-J., Cohen, I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101 (2001)

    Article  Google Scholar 

  • Mikhailov, A.S., Zanette, D.H.: Noise-induced breakdown of coherent collective motion in swarms. Phys. Rev. E 60, 4571–4575 (1999)

    Article  Google Scholar 

  • Nabet, B., Leonard, N.E., Couzin, I.D., Levin, S.A.: Dynamics of decision making in animal group motion. J. Nonlinear Sci. 19, 399–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Narayan, V., Menon, N., Ramaswamy, S.: Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic, and smectic correlations. J. Stat. Mech. P01005 (2006)

  • Narayan, V., Ramaswamy, S., Menon, N.: Swarming granular nematic long-lived giant number fluctuations in a swarming granular nematic. Science 317, 105–108 (2007)

    Article  Google Scholar 

  • Peruani, F., Deutsch, A., Bär, M.: Nonequilibrium clustering of self-propelled rods. Phys. Rev. E 74, 030904(R) (2006)

    Article  Google Scholar 

  • Redon, S., Kheddar, A., Coquillart, S.: Gauss’ least constraints principle and rigid body simulations. In: Proc. 2002 IEEE International Conference on Robotics & Automation, Washington, DC (2002)

    Google Scholar 

  • Riedel, I.H., Kruse, K., Howard, J.: A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2008)

    Article  Google Scholar 

  • Shimoyama, N.N., Sugawara, K., Mizuguchi, T., Hayakawa, Y., Sano, M.: Collective motion in a system of motile elements. Phys. Rev. Lett. 76, 3870–3873 (1996)

    Article  Google Scholar 

  • Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.O.: Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102 (2007)

    Article  Google Scholar 

  • Strutt, J.W.: The problem of the random walk. Nature 72, 318 (1905)

    Article  Google Scholar 

  • Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press, Princeton (2009). Available online at http://www.collective-behavior.com/

    MATH  Google Scholar 

  • Swaminathan, S., Ziebert, F., Aranson, I.S., Karpeev, D.: Patterns and intrinsic fluctuations in semi-dilute motor-filament systems. Europhys. Lett. 90, 28001 (2010)

    Article  Google Scholar 

  • Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326 (1995)

    Article  Google Scholar 

  • Toner, J., Tu, Y., Ramaswamy, S.: Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Van den Broeck, C., Parrondo, J.M.R., Toral, R.: Noise-induced nonequilibrium phase transition. Phys. Rev. Lett. 73, 3395 (1994)

    Article  Google Scholar 

  • Vásárhelyi, G., Ábel, D., Tarcai, N., Virágh, Cs., Várkonyi, P.L., Vicsek, T.: Phases and phase transitions in the collective dynamics of simple robotic flocks. Manuscript in preparation (2010)

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995)

    Article  Google Scholar 

  • Zhou, C., Kurths, J.: Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys. Rev. Lett. 88, 230602 (2002)

    Article  Google Scholar 

  • Ziebert, F., Aranson, I.S., Tsimring, L.S.: Effects of cross-links on motor-mediated filament organization. New J. Phys. 9, 421 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter L. Várkonyi.

Additional information

Communicated by I.D. Couzin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Várkonyi, P.L. Communication and Collective Consensus Making in Animal Groups via Mechanical Interactions. J Nonlinear Sci 21, 387–401 (2011). https://doi.org/10.1007/s00332-010-9085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9085-7

Keywords

Mathematics Subject Classification (2000)