Abstract
Dynamic systems that are subject to fast disturbances, parametrised by a disturbance vector d, undergo bifurcations for some values of the disturbance d. In this work we specifically examine those bifurcations which give rise to system trajectories that leave the domain of attraction of a desired system state. We derive equations which describe the manifold of bifurcation values (that is the manifold of disturbances d which cause the system trajectory to abandon the desired domain of attraction) and the corresponding normal vectors. The system of equations can then be used to find the smallest critical disturbance in physical, biological or other systems, or to robustly optimise design parameters of an engineered system.
Similar content being viewed by others
References
Agrawal, P., Lee, C., Lim, H., Ramkrishna, D.: Theoretical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors. Chem. Eng. Sci. 37, 453–462 (1982)
Assavapokee, T., Realff, M.J., Ammons, J.C.: Min-max regret robust optimization approach on interval data uncertainty. J. Optim. Theory Appl. 137(2), 297–316 (2008)
Averbakh, I., Zhao, Y.-B.: Explicit reformulations for robust optimization problems with general uncertainty sets. SIAM J. Optim. 18(4), 1436–1466 (2007)
Bahri, P.A., Bandoni, J.A., Romagnoli, J.A.: Effect of disturbances in optimizing control: Steady-state open-loop backoff problem. AIChE J. 42(4), 983–994 (1996)
Bahri, P.A., Bandoni, J.A., Romagnoli, J.A.: Integrated flexibility and controllability analysis in design of chemical processes. AIChE J. 43(4), 997–1015 (1997)
Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643–647 (1943)
Ben-Tal, A., Nemirovski, A.: Selected topics in robust convex optimization. Math. Program. Ser. B 112(1), 125–158 (2008)
Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)
Bildea, C.S., Dimian, A.C.: Singularity theory approach to ideal binary distillation. AIChE J. 45(12), 2662–2666 (1999)
Blanco, A.M., Bandoni, J.A.: Optimal design of stable processes. Lat. Am. Appl. Res. 33, 123–128 (2003)
Brayton, R.K., Tong, C.H.: Constructive stability and asymptotic stability of dynamical systems. IEEE Trans. Circuits Syst. 27(11), 1121–1130 (1980)
Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1987)
Cañizares, C.A.: Calculating optimal system parameters to maximize the distance to saddle-node bifurcations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(3), 225–237 (1998)
Chiang, H.-D., Fekih-Ahmed, L.: Quasi-stability regions of nonlinear dynamical systems: Optimal estimations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 43(8), 636–643 (1996)
Chiang, H.-D., Thorp, J.: The closest unstable equilibrium point method for power system dynamic security assessment. IEEE Trans. Circuits Syst. 36(9), 1187–1200 (1989a)
Chiang, H.-D., Thorp, J.: Stability regions of nonlinear dynamical systems: A constructive methodology. IEEE Trans. Autom. Control 34(12), 1229–1241 (1989b)
Chiang, H.-D., Wu, F., Varaiya, P.: Foundations of direct methods for power system transient stability analysis. IEEE Trans. Circuits Syst. 34(2), 160–173 (1987)
Chiang, H.-D., Hirsch, W., Wu, F.: Stability regions of nonlinear autonomous dynamical systems. IEEE Trans. Autom. Control 33(1), 16–27 (1988)
Dimitriadis, V.D., Pistikopoulos, E.N.: Flexibility analysis of dynamic systems. Ind. Eng. Chem. Res. 34, 4451–4462 (1995)
Dobson, I.: Computing a closest bifurcation instability in multidimensional parameter space. J. Nonlinear Sci. 3, 307–327 (1993)
Dobson, I.: Distance to bifurcation in multidimensional parameter space: Margin sensitivity and closest bifurcations. In: Bifurcation Control. Lecture Notes in Control and Inform. Sci., vol. 293, pp. 49–66. Springer, Berlin (2003)
El-Abiad, A., Nagappan, K.: Transient stability regions of multimachine power systems. IEEE Trans. Power Appar. Syst. 85(2), 169–179 (1966)
Floudas, C.A., Gümüş, Z.H., Ierapetritou, M.G.: Global optimization in design under uncertainty: Feasibility test and flexibility index problems. Ind. Eng. Chem. Res. 40, 4267–4282 (2001)
Fuchs, M., Neumaier, A.: Autonomous robust design optimization with potential clouds. Int. J. Reliab. Saf. 3(1/2/3), 23–34 (2009a)
Fuchs, M., Neumaier, A.: Potential based clouds in robust design optimization. J. Stat. Theory Pract. 3(1), 225–238 (2009b)
Genesio, R., Tartaglia, M., Vicino, A.: On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. Autom. Control 30(8), 747–755 (1985)
Gerhard, J., Marquardt, W., Mönnigmann, M.: Normal vectors on critical manifolds for robust design of transient processes in the presence of fast disturbances. SIAM J. Appl. Dyn. Syst. 7(2), 461–490 (2008)
Guckenheimer, J., Holmes, P.H.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983)
Halemane, K.P., Grossmann, I.E.: Optimal process design under uncertainty. AIChE J. 29(3), 425–433 (1983)
Hangos, K.M., Cameron, I.T.: Process Modeling and Analysis. Academic Press, New York (2001)
Heiszwolf, J.J., Fortuin, J.M.H.: Design procedure for stable operations of first-order reaction systems in a CSTR. AIChE J. 43(4), 1060–1068 (1997)
Hiskens, I.: Iterative computation of marginally stable trajectories. Int. J. Nonlinear Robust Control 14, 911–924 (2004)
Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)
Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(3), 763–791 (2005)
Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1974)
Lee, J., Chiang, H.-D.: A singular fixed-point homotopy method to locate the closest unstable equilibrium point for transient stability region estimate. IEEE Trans. Circuits Syst. II, Express Briefs 51(4), 185–189 (2004)
Lin, Y., Gwaltney, C.R., Stadtherr, M.A.: Reliable modeling and optimization for chemical engineering applications: UInterval analysis approach. Reliab. Comput. 12(6), 427–450 (2006)
Liu, C.-W., Thorp, S.: A novel method to compute the closest unstable equilibrium point for transient stability region estimate in power systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(7), 630–635 (1997)
Michel, A.N., Sarabudla, N.R., Miller, R.K.: Stability analysis of complex dynamical systems. Circuits Syst. Signal Process. 1(2), 171–202 (1982)
Mohideen, M.J., Perkings, J.D., Pistikopoulos, N.: Optimal design of dynamic systems under uncertainty. AIChE J. 42(8), 2251–2272 (1996)
Mohideen, M.J., Perkins, J.D., Pistikopoulos, E.N.: Robust stability considerations in optimal design of dynamic systems under uncertainty. J. Process Control 7(5), 371–385 (1997)
Mönnigmann, M., Marquardt, W.: Normal vectors on manifolds of critical points for parametric robustness of equilibrium solutions. J. Nonlinear Sci. 12, 85–112 (2002)
Mönnigmann, M., Marquardt, W.: Steady-state process optimization with guaranteed robust stability and feasibility. AIChE J. 49(12), 3110–3126 (2003)
Mönnigmann, M., Marquardt, W.: Steady-state process optimization with guaranteed robust stability and flexibility: Application to HDA reaction section. Ind. Eng. Chem. Res. 44, 2737–2753 (2005)
Mönnigmann, M., Marquardt, W., Bischof, C.H., Beelitz, T., Lang, B., Willems, P.: A hybrid approach for efficient robust design of dynamic systems. SIAM Rev. 49(2), 236–254 (2007)
Murray, J.D.: Mathematical Biology II, 3rd edn. Springer, Berlin (2003)
Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, Berlin (2007)
Osinga, H.M., Rokni, R., Townley, S.: Numerical approximations of strong (un)stable manifolds. Dyn. Syst. 19(3), 195–215 (2004)
Rheinboldt, W.C.: Differential-algebraic systems as differential equations on manifolds. Math. Comput. 43(168), 473–482 (1984)
Sahinidis, N.V.: Optimization under uncertainty: State-of-the-art and opportunities. Comput. Chem. Eng. 28, 971–983 (2004)
Sandoval, L.A.R., Budman, H.M., Douglas, P.L.: Simultaneous design and control of processes under uncertainty: A robust modelling approach. J. Process Control 18, 735–752 (2008)
Suh, M.-h., Lee, T.-y.: Robust optimization method for the economic term in chemical process design and planning. Ind. Eng. Chem. Res. 40(25), 5950–5959 (2001)
Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part I: Formulation and theory. AIChE J. 31(4), 621–630 (1985)
Teymour, F., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—IV. Dynamic stability and bifurcation analysis of an experimental reactor. Chem. Eng. Sci. 44, 1967–1982 (1989)
Teymour, F., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—V. Experimental investigation of limit-cycle behavior for vinyl acetate polymerization. Chem. Eng. Sci. 47(15/16), 4121–4132 (1992a)
Teymour, F., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—VI. Complex dynamics in full-scale reactors. Chem. Eng. Sci. 47(15/16), 4133–4140 (1992b)
Varaiya, P., Wu, F., Chen, R.-L.: Direct methods for transient stability analysis of power systems: Recent results. Proc. IEEE 73(12), 1703–1715 (1985)
Willems, J.I.: Direct methods for transient stability studies in power system analysis. IEEE Trans. Autom. Control 16(4), 332–340 (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Haller.
Rights and permissions
About this article
Cite this article
Wirth, B., Gerhard, J. & Marquardt, W. Robust Optimisation with Normal Vectors on Critical Manifolds of Disturbance-Induced Stability Loss. J Nonlinear Sci 21, 57–92 (2011). https://doi.org/10.1007/s00332-010-9076-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-010-9076-8