Robust Optimisation with Normal Vectors on Critical Manifolds of Disturbance-Induced Stability Loss | Journal of Nonlinear Science
Skip to main content

Robust Optimisation with Normal Vectors on Critical Manifolds of Disturbance-Induced Stability Loss

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Dynamic systems that are subject to fast disturbances, parametrised by a disturbance vector d, undergo bifurcations for some values of the disturbance d. In this work we specifically examine those bifurcations which give rise to system trajectories that leave the domain of attraction of a desired system state. We derive equations which describe the manifold of bifurcation values (that is the manifold of disturbances d which cause the system trajectory to abandon the desired domain of attraction) and the corresponding normal vectors. The system of equations can then be used to find the smallest critical disturbance in physical, biological or other systems, or to robustly optimise design parameters of an engineered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, P., Lee, C., Lim, H., Ramkrishna, D.: Theoretical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors. Chem. Eng. Sci. 37, 453–462 (1982)

    Article  Google Scholar 

  • Assavapokee, T., Realff, M.J., Ammons, J.C.: Min-max regret robust optimization approach on interval data uncertainty. J. Optim. Theory Appl. 137(2), 297–316 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Averbakh, I., Zhao, Y.-B.: Explicit reformulations for robust optimization problems with general uncertainty sets. SIAM J. Optim. 18(4), 1436–1466 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Bahri, P.A., Bandoni, J.A., Romagnoli, J.A.: Effect of disturbances in optimizing control: Steady-state open-loop backoff problem. AIChE J. 42(4), 983–994 (1996)

    Article  Google Scholar 

  • Bahri, P.A., Bandoni, J.A., Romagnoli, J.A.: Integrated flexibility and controllability analysis in design of chemical processes. AIChE J. 43(4), 997–1015 (1997)

    Article  Google Scholar 

  • Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643–647 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal, A., Nemirovski, A.: Selected topics in robust convex optimization. Math. Program. Ser. B 112(1), 125–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Bildea, C.S., Dimian, A.C.: Singularity theory approach to ideal binary distillation. AIChE J. 45(12), 2662–2666 (1999)

    Article  Google Scholar 

  • Blanco, A.M., Bandoni, J.A.: Optimal design of stable processes. Lat. Am. Appl. Res. 33, 123–128 (2003)

    Google Scholar 

  • Brayton, R.K., Tong, C.H.: Constructive stability and asymptotic stability of dynamical systems. IEEE Trans. Circuits Syst. 27(11), 1121–1130 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1987)

    Google Scholar 

  • Cañizares, C.A.: Calculating optimal system parameters to maximize the distance to saddle-node bifurcations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(3), 225–237 (1998)

    Article  Google Scholar 

  • Chiang, H.-D., Fekih-Ahmed, L.: Quasi-stability regions of nonlinear dynamical systems: Optimal estimations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 43(8), 636–643 (1996)

    Article  MathSciNet  Google Scholar 

  • Chiang, H.-D., Thorp, J.: The closest unstable equilibrium point method for power system dynamic security assessment. IEEE Trans. Circuits Syst. 36(9), 1187–1200 (1989a)

    Article  MathSciNet  Google Scholar 

  • Chiang, H.-D., Thorp, J.: Stability regions of nonlinear dynamical systems: A constructive methodology. IEEE Trans. Autom. Control 34(12), 1229–1241 (1989b)

    Article  MATH  MathSciNet  Google Scholar 

  • Chiang, H.-D., Wu, F., Varaiya, P.: Foundations of direct methods for power system transient stability analysis. IEEE Trans. Circuits Syst. 34(2), 160–173 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Chiang, H.-D., Hirsch, W., Wu, F.: Stability regions of nonlinear autonomous dynamical systems. IEEE Trans. Autom. Control 33(1), 16–27 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Dimitriadis, V.D., Pistikopoulos, E.N.: Flexibility analysis of dynamic systems. Ind. Eng. Chem. Res. 34, 4451–4462 (1995)

    Article  Google Scholar 

  • Dobson, I.: Computing a closest bifurcation instability in multidimensional parameter space. J. Nonlinear Sci. 3, 307–327 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Dobson, I.: Distance to bifurcation in multidimensional parameter space: Margin sensitivity and closest bifurcations. In: Bifurcation Control. Lecture Notes in Control and Inform. Sci., vol. 293, pp. 49–66. Springer, Berlin (2003)

    Google Scholar 

  • El-Abiad, A., Nagappan, K.: Transient stability regions of multimachine power systems. IEEE Trans. Power Appar. Syst. 85(2), 169–179 (1966)

    Article  Google Scholar 

  • Floudas, C.A., Gümüş, Z.H., Ierapetritou, M.G.: Global optimization in design under uncertainty: Feasibility test and flexibility index problems. Ind. Eng. Chem. Res. 40, 4267–4282 (2001)

    Article  Google Scholar 

  • Fuchs, M., Neumaier, A.: Autonomous robust design optimization with potential clouds. Int. J. Reliab. Saf. 3(1/2/3), 23–34 (2009a)

    Article  Google Scholar 

  • Fuchs, M., Neumaier, A.: Potential based clouds in robust design optimization. J. Stat. Theory Pract. 3(1), 225–238 (2009b)

    Google Scholar 

  • Genesio, R., Tartaglia, M., Vicino, A.: On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. Autom. Control 30(8), 747–755 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Gerhard, J., Marquardt, W., Mönnigmann, M.: Normal vectors on critical manifolds for robust design of transient processes in the presence of fast disturbances. SIAM J. Appl. Dyn. Syst. 7(2), 461–490 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J., Holmes, P.H.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Halemane, K.P., Grossmann, I.E.: Optimal process design under uncertainty. AIChE J. 29(3), 425–433 (1983)

    Article  MathSciNet  Google Scholar 

  • Hangos, K.M., Cameron, I.T.: Process Modeling and Analysis. Academic Press, New York (2001)

    Google Scholar 

  • Heiszwolf, J.J., Fortuin, J.M.H.: Design procedure for stable operations of first-order reaction systems in a CSTR. AIChE J. 43(4), 1060–1068 (1997)

    Article  Google Scholar 

  • Hiskens, I.: Iterative computation of marginally stable trajectories. Int. J. Nonlinear Robust Control 14, 911–924 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  • Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(3), 763–791 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1974)

    Google Scholar 

  • Lee, J., Chiang, H.-D.: A singular fixed-point homotopy method to locate the closest unstable equilibrium point for transient stability region estimate. IEEE Trans. Circuits Syst. II, Express Briefs 51(4), 185–189 (2004)

    Article  Google Scholar 

  • Lin, Y., Gwaltney, C.R., Stadtherr, M.A.: Reliable modeling and optimization for chemical engineering applications: UInterval analysis approach. Reliab. Comput. 12(6), 427–450 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, C.-W., Thorp, S.: A novel method to compute the closest unstable equilibrium point for transient stability region estimate in power systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(7), 630–635 (1997)

    Article  MATH  Google Scholar 

  • Michel, A.N., Sarabudla, N.R., Miller, R.K.: Stability analysis of complex dynamical systems. Circuits Syst. Signal Process. 1(2), 171–202 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Mohideen, M.J., Perkings, J.D., Pistikopoulos, N.: Optimal design of dynamic systems under uncertainty. AIChE J. 42(8), 2251–2272 (1996)

    Article  Google Scholar 

  • Mohideen, M.J., Perkins, J.D., Pistikopoulos, E.N.: Robust stability considerations in optimal design of dynamic systems under uncertainty. J. Process Control 7(5), 371–385 (1997)

    Article  Google Scholar 

  • Mönnigmann, M., Marquardt, W.: Normal vectors on manifolds of critical points for parametric robustness of equilibrium solutions. J. Nonlinear Sci. 12, 85–112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Mönnigmann, M., Marquardt, W.: Steady-state process optimization with guaranteed robust stability and feasibility. AIChE J. 49(12), 3110–3126 (2003)

    Article  Google Scholar 

  • Mönnigmann, M., Marquardt, W.: Steady-state process optimization with guaranteed robust stability and flexibility: Application to HDA reaction section. Ind. Eng. Chem. Res. 44, 2737–2753 (2005)

    Article  Google Scholar 

  • Mönnigmann, M., Marquardt, W., Bischof, C.H., Beelitz, T., Lang, B., Willems, P.: A hybrid approach for efficient robust design of dynamic systems. SIAM Rev. 49(2), 236–254 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J.D.: Mathematical Biology II, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  • Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  • Osinga, H.M., Rokni, R., Townley, S.: Numerical approximations of strong (un)stable manifolds. Dyn. Syst. 19(3), 195–215 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Rheinboldt, W.C.: Differential-algebraic systems as differential equations on manifolds. Math. Comput. 43(168), 473–482 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Sahinidis, N.V.: Optimization under uncertainty: State-of-the-art and opportunities. Comput. Chem. Eng. 28, 971–983 (2004)

    Article  Google Scholar 

  • Sandoval, L.A.R., Budman, H.M., Douglas, P.L.: Simultaneous design and control of processes under uncertainty: A robust modelling approach. J. Process Control 18, 735–752 (2008)

    Article  Google Scholar 

  • Suh, M.-h., Lee, T.-y.: Robust optimization method for the economic term in chemical process design and planning. Ind. Eng. Chem. Res. 40(25), 5950–5959 (2001)

    Article  Google Scholar 

  • Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part I: Formulation and theory. AIChE J. 31(4), 621–630 (1985)

    Article  Google Scholar 

  • Teymour, F., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—IV. Dynamic stability and bifurcation analysis of an experimental reactor. Chem. Eng. Sci. 44, 1967–1982 (1989)

    Article  Google Scholar 

  • Teymour, F., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—V. Experimental investigation of limit-cycle behavior for vinyl acetate polymerization. Chem. Eng. Sci. 47(15/16), 4121–4132 (1992a)

    Google Scholar 

  • Teymour, F., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—VI. Complex dynamics in full-scale reactors. Chem. Eng. Sci. 47(15/16), 4133–4140 (1992b)

    Google Scholar 

  • Varaiya, P., Wu, F., Chen, R.-L.: Direct methods for transient stability analysis of power systems: Recent results. Proc. IEEE 73(12), 1703–1715 (1985)

    Article  Google Scholar 

  • Willems, J.I.: Direct methods for transient stability studies in power system analysis. IEEE Trans. Autom. Control 16(4), 332–340 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Wirth.

Additional information

Communicated by G. Haller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, B., Gerhard, J. & Marquardt, W. Robust Optimisation with Normal Vectors on Critical Manifolds of Disturbance-Induced Stability Loss. J Nonlinear Sci 21, 57–92 (2011). https://doi.org/10.1007/s00332-010-9076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9076-8

Keywords

Mathematics Subject Classification (2000)