Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell | Journal of Nonlinear Science Skip to main content
Log in

Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

The theory of algebraic curves and quadrature domains is used to construct exact solutions to the problem of the squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell. The solutions are exact in that they can be written down in terms of a finite set of time-evolving parameters. The method is very general and applies to fluid domains of any finite connectivity. By way of example, the evolution of fluid domains with two and four air holes are calculated explicitly. For simply connected domains, the squeeze flow problem is well posed. In contrast, the squeeze flow problem for a multiply connected domain is not necessarily well-posed and solutions can break down in finite time by the formation of cusps on the boundaries of the enclosed air holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ablovitz & A. S. Fokas, Complex variables, Cambridge University Press, Cambridge (1997).

    Google Scholar 

  2. D. Aharonov & H. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Anal. Math., 30, 39–73 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. G. Crowdy, Theory of exact solutions for the evolution of a fluid annulus in a rotating Hele-Shaw cell, Q. Appl. Math. (to appear).

  4. D. G. Crowdy, On a class of geometry-driven free boundary problems, SIAM J. Appl. Math. (to appear).

  5. D. G. Crowdy, On the construction of multiply-connected quadrature domains, SIAM J. Appl. Math. (to appear).

  6. V. M. Entov, P. I. Etingof, & D. Ya Kleinbock, On nonlinear interface dynamics in Hele-Shaw flows, Eur. J. Appl. Math., 6, 399–420, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Gustafsson, Quadrature identities and the Schottky double, Acta. Appl. Math., 1, 209–240 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Gustafsson, Singular and special points on quadrature domains from an algebraic geometric point of view, J. Anal. Math., 51, 91–117 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. P. Kufarev, The oil contour problem for the circle with any number of wells, Dokl. Akad. Nauk SSSR, 75, 507–510 (1950).

    MathSciNet  Google Scholar 

  10. G. A. Jones & D. Singerman, Complex functions, Cambridge University Press, Cambridge (1987).

    MATH  Google Scholar 

  11. P. Ya. Polubarinova-Kochina, On the motion of the oil contour, Dokl. Akad. Nauk SSSR, 47, 254–257 (1945).

    Google Scholar 

  12. S. Richardson, Some Hele-Shaw flows with time-dependent free boundaries, J. Fluid Mech., 102, 263–278 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Richardson, Hele-Shaw flows with time-dependent free boundaries in which the fluid occupies a multiply connected region, Eur. J. Appl. Math., 5, 97–122 (1994).

    Article  MATH  Google Scholar 

  14. S. Richardson, Hele-Shaw flows with time-dependent free boundaries involving a concentric annulus, Phil. Trans. R. Soc. Land., 354, 2513–2553 (1996).

    Article  MATH  Google Scholar 

  15. M. Sakai, Quadrature domains, Lecture Notes in Mathematics, 934, Springer-Verlag, New York (1982).

    Google Scholar 

  16. S. Saks & A. Zygmund, Analytic functions, 3rd ed., Elsevier, Amsterdam (1971).

    Google Scholar 

  17. H. S. Shapiro, Unbounded quadrature domains, in Complex Analysis I, Proceedings, University of Maryland 1985–86, C. A. Bernstein (ed.), Lecture Notes in Mathematics, 1275, Springer-Verlag, Berlin (1987), pp. 287–331.

    Google Scholar 

  18. M. J. Shelley, F. R. Tian, & K. Wlodarski, Hele-Shaw flow and pattern formation in a timedependent gap, Nonlinearity, 10, 1471–1495 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Siegel, S. Tanveer, & W. S. Dai, Singular effects of surface tension in evolving Hele-Shaw cells, J. Fluid Mech., 323, pp. 201–236 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Valiron, Cours d’analyse mathematique: Theorie des fonctions, 2nd ed., Masson et Cie, Paris (1940).

    Google Scholar 

  21. A. N. Varchenko & P. I. Etingof, Why the boundary of a round drop becomes a curve of order four, University Lecture Series, American Mathematical Society, Providence, RI (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Crowdy.

Additional information

Communicated by M. Shelley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowdy, D., Kang, H. Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell. J. Nonlinear Sci. 11, 279–304 (2001). https://doi.org/10.1007/s00332-001-0397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-001-0397-5

Keywords