Cost allocation for less-than-truckload collaboration among perishable product retailers | OR Spectrum Skip to main content
Log in

Cost allocation for less-than-truckload collaboration among perishable product retailers

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We study cost allocation problem arising from less-than-truckload collaboration among perishable product retailers. The relevant costs we consider include fixed transportation cost, variable transportation cost, and decay loss of perishable products. Cooperative game theory is applied to study this cost allocation problem. The corresponding cooperative game, called transportation facility choice game, is established. First, we show that the core of the transportation facility choice game is non-empty. Then, we identify some conditions for concavity and quasi-concavity of the transportation facility choice game with the linear decay and negative exponential decay functions, respectively. Finally, simulation is conducted to analyze how optimal solutions differ under the linear decay and exponential decay functions, and intuitive cost allocation schemes are proposed and compared with the \(\tau \)-value and the Shapley value of the corresponding game. Simulation results show that the optimal solution under linear decay function tends to choose facilities with higher fixed cost than that under exponential decay function. Additionally, among all the cost allocation schemes compared, the simple cost allocation scheme called A-IM, the \(\tau \)-value, and the Shapley value have better performance in terms of the percentage of allocations lying in the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adenso-Díaz B, Lozano S, Garcia-Carbajal S, Smit-Miles K (2014) Assessing partnership savings in horizontal cooperation by planning lined delivers. Transp Res A 66:268–279

    Google Scholar 

  • Audy JF, D’Amours S, Rousseau LM (2011) Cost allocation in the establishment of a collaborative transportation agreement: an application in the furniture industry. J Oper Res Soc 62:960–970

    Article  Google Scholar 

  • Cai X, Chen J, Xiao YB, Xu XL (2010) Optimization and coordination of fresh product supply chains with freshness keeping effort. Prod Oper Manag 19(3):261–278

    Article  Google Scholar 

  • Cruijssen F (2006) Horizontal cooperation in transport and logistics. PhD Thesis, Tilburg University, The Netherlands

  • Cruijssen F, CoolsM, DullaertW (2007a) Horizontal cooperation in logistics: opportunities and impediments. Transp Res E 43(2):129–142

  • Cruijssen F, DullaertW, Fleuren H (2007b) Horizontal cooperation in transport and logistics: a literature review. Transp J 46 (3): 22–39

  • Cruijssen F, Borm P, Fleuren H, Hamers H (2010) Supplier-initiated outsourcing: a methodology to exploit synergy in transportation. Eur J Oper Res 207(2):763–774

  • Defryn C, Vanovermeire C, Sörensen K, Van Breedam A, Vannieuwenhuyse B, Verstrepen S, Groep T (2013) Gain sharing in horizontal logistic collaboration. Working paper, University of Antwerp, Antwerp, Belgium

  • Driessen TSH, Tijs SH (1983) The \(\tau \) value, the nucleolus and the core for a subclass of games. Methods Oper Res 46:395–406

    Google Scholar 

  • Ergun O, Kuyzu G, Savelsbergh M (2007a) Shipper collaboration. Comp Oper Res 34(6):1551–1560

  • Ergun O, Kuyzu G, Savelsbergh M (2007b) Reducing truckload transportation costs through collaboration. Transp Sci 41(2):206–221

  • Fujiwara O, Perera ULJSR (1993) EOQ models for continuously deteriorating products using linear and exponential penalty costs. Eur J Oper Res 70(1):104–114

    Article  Google Scholar 

  • Goemans MX, Skutella M (2004) Cooperative facility location games. J Algorithms 50:194–214

    Article  Google Scholar 

  • Goyal SK, Giri BC (2001) Recent trends in modeling of deteriorating inventory. Eur J Oper Res 134(1):1–16

    Article  Google Scholar 

  • Homburg C, Scherpereel P (2008) How should the cost of joint risk capital be allocated for performance measurement? Eur J Oper Res 187(1):208–227

    Article  Google Scholar 

  • Hsu CI, Hung SF, Li HC (2007) Vehicle routing problem with time-windows for perishable food delivery. J Food Eng 80(2):465–475

    Article  Google Scholar 

  • Krajewska M, Kopfer H, Laporte G, Ropke S, Zaccour G (2008) Horizontal cooperation among freight carriers: request allocation and profit sharing. J Oper Res Soc 59:1483–1491

    Article  Google Scholar 

  • Krajewska M, Kopfer H (2006) Collaborating freight forwarding enterprises-request allocation and profit sharing. OR Spectr 28(3):301–317

    Article  Google Scholar 

  • Lozano S, Moreno P, Adenso-Díaz B, Algaba E (2013) Cooperative game theory approach to allocating benefits of horizontal cooperation. Eur J Oper Res 229(2):444–452

    Article  Google Scholar 

  • Nahmias S (1982) Perishable inventory theory: a review. Oper Res 30(4):680–708

    Article  Google Scholar 

  • Nguyen C, Toriello A, Dessouky M, Moore JE II (2013) Evaluation of transportation practices in the California cut flower industry. Interfaces 43(2):182–193

    Article  Google Scholar 

  • Özener OO, Ergun O, Savelsbergh M (2011) Lane-exchange mechanisms for truckload carrier collaboration. Transp Sci 45(1):1–17

    Article  Google Scholar 

  • Özener OO, Ergun O (2008) Allocating costs in a collaborative transportation procurement network. Transp Sci 42(2):146–165

    Article  Google Scholar 

  • Raafat F (1991) Survey of literature on continuously deteriorating inventory models. J Oper Res Soc 42(1):27–37

    Article  Google Scholar 

  • Schmeidler D (1969) Nucleolus of a characteristic function game. SIAM J Appl Math 17(6):215–225

    Article  Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn H, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, New Jersey, pp 307–317

    Google Scholar 

  • Shapley LS (1971) Cores of convex games. Int J Game Theory 1(1):1–26

    Article  Google Scholar 

  • Tijs SH (1981) Bounds for the core and the \(\tau \)-value. In: Moeschlin O, Pallaschke D (eds) Game theory and mathematical economics. North-Holland, Amsterdam, pp 123–132

    Google Scholar 

  • Tijs SH, Driessen TSH (1986) Game theory and cost allocation problems. Manag Sci 32(8):1015–1028

    Article  Google Scholar 

  • Wang X, Kopfer H (2014) Collaborative transportation planning of less-than-truckload freight. OR Spectr 36(2):357–380

    Article  Google Scholar 

  • Yilmaz O, Savasaneril S (2012) Collaboration among small shippers in a transportation market. Eur J Oper Res 218(2):408–415

    Article  Google Scholar 

  • Zhou GH, Hui YV, Liang L (2011) Strategic alliance in freight consolidation. Transp Res E 47(1):18–29

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the associate editor and the referees for their insightful comments and suggestions. They helped the authors improve both the content and exposition of this work. The authors also express their gratitude to Mr. Zhuhui for his help on simulation. This work was supported by Major Program of the National Natural Science Foundation of China (71490725, 71490722) and Program of the National Natural Science Foundation of China (71271178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Appendices

Appendix 1: Proof of Proposition 3

Proof

For notational convenience, in this proof we use c(S) to denote \(c_{L}(S)\) (that is, the subscript are omitted). Other notions are simplified similarly. If \(c(S)=\underset{k\in F}{\min }c(S)_{k}\), then \(c(S)=\underset{k\in F}{\min }\left\{ f_{k}+\underset{j\in S}{\sum }a_{k} d_jq_{j}+\underset{j\in S}{\sum }t_{k}d_j\theta _{j}q_{j}\right\} \). Let \(f^{S}\), \(a^{S}\) and \(t^{S}\) be the fixed cost, unit variable cost and traveling time per unit traveling distance corresponding to c(S) , respectively. Then,

$$\begin{aligned} c(S)=f^{S}+\underset{j\in S}{\sum }a^{S}d_jq_{j}+\underset{j\in S}{\sum }t^{S}d_j\theta _{j}q_{j}. \end{aligned}$$

(1) For \(i,j\in N\), we have \(c(\{i\})=\underset{k\in F}{\min }\left\{ f_{k}+a_{k}d_iq_{i}+t_{k}d_i\theta _{i}q_{i}\right\} =f^{\{i\}}+a^{\{i\}}d_iq_{i} +t^{\{i\}}d_i\theta _{i}q_{i}\). Similarly \(c(\{j\})=f^{\{j\}}+a^{\{j\}}d_jq_{j}+t^{\{j\}}d_j\theta _{j}q_{j}\). Let \(c(S)_{W}\) be the total cost for coalition S when W is the optimal set of facilities used by coalition S. Then

$$\begin{aligned} c(\{i,j\})_{\{i\}}=f^{\{i\}}+\sum _{k\in \{i,j\}}a^{\{i\}}d_k q_{k}+\sum _{k\in \{i,j\}}t^{\{i\}}d_k\theta _{k}q_{k}, \end{aligned}$$

and

$$\begin{aligned} c(\{i,j\})_{^{\{j\}}}=f^{\{j\}}+\sum _{k\in \{i,j\}}a^{\{j\}}d_k q_{k}+\sum _{k\in \{i,j\}}t^{\{j\}}d_k\theta _{k}q_{k}. \end{aligned}$$

Thus,

$$\begin{aligned} c(\{i,j\})_{\{i\}}-c(\{i\})-c(\{j\})&=-f^{\{j\}}+\big (a^{\{i\}}-a^{\{j\}} \big )d_jq_{j}+\big (t^{\{i\}}-t^{\{j\}}\big )d_j\theta _{j}q_{j}\\ {}&=-f^{\{j\}}+\big (f^{\{j\}} -f^{\{i\}}\big )\left( \delta d_j\theta _{j}q_{j}-a^{\{j\}}d_jq_{j}/f^{\{j\}}\right) , \end{aligned}$$
$$\begin{aligned} c(\{i,j\})_{^{\{j\}}}-c(\{i\})-c(\{j\})&=-f^{\{i\}}+\big (a^{\{j\}}-a^{\{i\}} \big )d_iq_{i}+\big (t^{\{j\}}-t^{\{i\}}\big )d_i\theta _{i}q_{i}\\ {}&=-f^{\{i\}}+\big (f^{\{i\}}-f^{\{j\}}\big )\left( \delta d_i\theta _{i}q_{i}-a^{\{i\}}d_iq_{i}/f^{\{i\}}\right) . \end{aligned}$$

If \(f_i\theta _{\min }\delta \ge a_i\), then \(\delta d_j\theta _{j}q_{j}-a^{\{j\}}d_jq_{j}/f^{\{j\}}\ge 0\), and \(\delta d_i\theta _{i}q_{i}-a^{\{i\}}d_iq_{i}/f^{\{i\}}\ge 0\).

If \(f^{\{i\}}\ge f^{\{j\}}\), we have \(c(\{i,j\})_{^{\{i\}}}-c(\{i\})-c(\{j\})\le -f^{\{j\}}<0\); otherwise \(c(\{i,j\})_{\{j\}}-c(\{i\})-c(\{j\})\le -f^{\{i\}}<0\).

If \(f_i\theta _{\max }\delta \le a_i\), then \(\delta d_j\theta _{j}q_{j} -a^{\{j\}}d_jq_{j}/f^{\{j\}}\le 0\), and \(\delta d_i\theta _{i}q_{i}-a^{\{i\}}d_iq_{i}/f^{\{i\}}\le 0\).

If \(f^{\{i\}}\le f^{\{j\}}\), then \(c(\{i,j\})_{\{i\}}-c(\{i\})-c(\{j\})\le -f^{\{j\}}<0\); otherwise \(c(\{i,j\})_{^{\{j\}}}-c(\{i\})-c(\{j\})\le -f^{\{i\}}<0\).

Given that at least one inequality is less than 0, \(\min \left\{ c(\{i,j\})_{\{i\}},c(\{i,j\})_{\{j\}}\right\} <c(\{i\})+c(\{j\})\), so \(c(\{i,j\})=\underset{_{k\in F}}{\min }c(\{i,j\})_{k}\).

(2) For \(S,T\in N\), and \(S\cap T=\emptyset \), let \(S\cup T=ST\), and suppose that \(c(S)=\underset{k\in F}{\min }c(S)_{k}\) on the set S and T. We then arrive at

$$\begin{aligned} c(S)= & {} f^{S}+t^{S}\sum _{j\in S}d_j\theta _{j}q_{j}+a^{S}\sum _{j\in S}d_jq_{j}, c(T)=f^{T}+t^{T}\sum _{j\in T}d_j\theta _{j} q_{j} \\&+ \, a^{T}\sum _{j\in T}d_jq_{j}. \end{aligned}$$

Note that \(\underset{_{k\in F}}{\min }~c(S\cup T)_{k}\le f^{S}+t^{S}\underset{j\in S\cup T}{\sum }d_j\theta _{j}q_{j}+a^{S}\underset{j\in S\cup T}{\sum }d_jq_{j} \), and \(\underset{_{k\in F} }{\min }~c(S\cup T)_{k}\le f^{T}+t^{T}\underset{j\in S\cup T}{\sum }d_j\theta _{j}q_{j} +a^{T}\underset{j\in S\cup T}{\sum }d_jq_{j} \). Let \(c(S,T)=\underset{_{k\in F}}{\min }~c(S\cup T)_{k}-c(S)-c(T)\). Thus, we have

$$\begin{aligned} c(S,T)\le -f^{S}+\big (t^{T}-t^{S}\big )\underset{j\in S}{\sum }d_j\theta _{j}q_{j}+\big (a^{T}-a^{S}\big )\underset{j\in S}{\sum }d_jq_{j} , \end{aligned}$$
(A.1)
$$\begin{aligned} c(S,T)\le -f^{T}+\big (t^{S}-t^{T}\big )\underset{j\in T}{\sum }d_j\theta _{j}q_{j}+\big (a^{S}-a^{T}\big )\underset{j\in T}{\sum }d_jq_{j}. \end{aligned}$$
(A.2)

Combining Condition A and Condition B with (A.1) and (A.2), respectively, we can obtain

$$\begin{aligned} c(S,T)\le \big (f^{S}-f^{T}\big )\left( \underset{j\in S}{\sum }\delta d_j\theta _{j} q_{j}-\sum _{j\in S}\frac{a^Sd_jq_{j}}{f^S}\right) -f^{S}. \end{aligned}$$
(A.3)
$$\begin{aligned} c(S,T)\le \big (f^{T}-f^{S}\big )\left( \underset{j\in T}{\sum }\delta d_j\theta _{j} q_{j}-\sum _{j\in T}\frac{a^Td_jq_{j}}{f^T}\right) -f^{T}, \end{aligned}$$
(A.4)

When \(f_i\theta _{\min }\delta \ge a_i\), we have \(\underset{j\in S}{\sum } \delta d_j\theta _{j}q_{j}-\underset{j\in S}{\sum }\frac{a^Sd_jq_{j}}{f^S}\ge 0\) and \(\underset{j\in T}{\sum }\delta d_j\theta _{j}q_{j}-\underset{j\in T}{\sum }\frac{a^Td_jq_{j}}{f^T}\ge 0\). Furthermore, if \(f^{S}\ge f^{T}\), then it follows from (A.4) that \(c(S,T)\le -f^{T}<0\); otherwise, \(c(S,T)\le -f^{S}<0\). Thus, \(c(S,T)<0\).

When \(f_i\theta _{\max }\delta \le a_i\), we have \(\underset{j\in S}{\sum }\delta d_j\theta _{j}q_{j}-\underset{j\in S}{\sum } \frac{a^Sd_jq_{j}}{f^S}\le 0\) and \(\underset{j\in S}{\sum }\delta d_j\theta _{j}q_{j}-\underset{j\in S}{\sum }\frac{a^Sd_jq_{j}}{f^S}\le 0\). Furthermore, if \(f^{S}\ge f^{T}\), then it follows from (A.3) that \(c(S,T)\le -f^{S}<0\); otherwise, \(c(S,T)\le -f^{T}<0\). Thus, \(c(S,T)<0\).

From the analysis above, we have \(\underset{_{k\in F}}{\min }c(S\cup T)_{k}<c(S)+c(T) \).

Given that

$$\begin{aligned} c(S\cup T)=\underset{\Pi _{S\cup T}}{\min }\underset{k\in F}{\sum }\left( f_{k}+\underset{j\in S\cup T}{\sum }a_{k}d_jq_{j}+\underset{j\in S\cup T}{\sum }t_{k}d_j\theta _{j}q_{j}\right) <c(S)+c(T), \end{aligned}$$

we have \(c(S\cup T)=\underset{k\in F}{\min }c(S\cup T)_{k}\).

(3) From (1), we know for \(S,T\in N\), and \(S\cap T=\emptyset \), \(\left| S\cup T\right| =2\), and so \(c(S\cup T)=\underset{k\in F}{\min }c(S\cup T)_{k}\). From (2), we know if \(\left| S\cup T\right| \le 3\), then \(c(S\cup T)=\underset{k\in F}{\min }c(S\cup T)_{k}\). It can be derived similarly that \(c(S\cup T)=\underset{k\in F}{\min }c(S\cup T)_{k}\), for all \(S\in N\). \(\square \)

Appendix 2: Proof of Proposition 5

Proof

For \(l\notin S\subset T\subseteq N\), let \(h(S,\{l\})=c(S\cup \{l\})-c(S)\). Then,

$$\begin{aligned} h(S,\{l\})= & {} f^{S\cup \{l\}}+a^{S\cup \{l\}}\underset{j\in S\cup \{l\}}{\sum }d_jq_{j}+t^{S\cup \{l\}}\underset{j\in S\cup \{l\}}{\sum } d_j\theta _{j}q_{j}-f^{S}-a^{S}\underset{j\in S}{\sum }d_jq_{j}\\&\,- \, t^{S}\underset{j\in S}{\sum }d_j\theta _{j}q_{j}. \end{aligned}$$

Since

$$\begin{aligned} c(S\cup \{l\})\le f^{S}+a^{S}\underset{j\in S\cup \{l\}}{\sum }d_jq_{j}+t^{S}\underset{j\in S\cup \{l\}}{\sum }d_j\theta _{j}q_{j}, \end{aligned}$$

and

$$\begin{aligned} c(S)\le f^{S\cup \{l\}}+a^{S\cup \{l\}}\underset{j\in S}{\sum } d_jq_{j}+t^{S\cup \{l\}}\underset{j\in S}{\sum }d_j\theta _{j}q_{j}, \end{aligned}$$

we have

$$\begin{aligned} t^{S\cup \{l\}}d_l\theta _{l}q_{l}+a^{S\cup \{l\}}d_lq_{l}\le h(S,\{l\})\le t^{S}d_l\theta _{l}q_{l}+a^{S}d_lq_{l}. \end{aligned}$$

Similarly, we can show that

$$\begin{aligned} t^{T\cup \{l\}}d_l\theta _{l}q_{l}+a^{T\cup \{l\}}d_lq_{l}\le h(T,\{l\})\le t^{T}d_l\theta _{l}q_{l} +a^{T}d_lq_{l}. \end{aligned}$$

Therefore,

$$\begin{aligned} h(S,\{l\})-h(T,\{l\})\ge \big (t^{S\cup \{l\}}-t^{T}\big )d_l\theta _{l} q_{l}+\big (a^{S\cup \{l\}}-a^{T}\big )d_lq_{l}. \end{aligned}$$
(A.5)

Furthermore,

$$\begin{aligned} h(S,\{l\})-h(T,\{l\})&=f^{S\cup \{l\}}+a^{S\cup \{l\}} \underset{j\in S\cup \{l\}}{\sum }d_jq_{j}+t^{S\cup \{l\}}\underset{j\in S\cup \{l\}}{\sum }d_j\theta _{j}q_{j}\\&\quad -f^{S}-a^{S}\underset{j\in S}{\sum }d_jq_{j} -t^{S}\underset{j\in S}{\sum }d_j\theta _{j}q_{j}-f^{T\cup \{l\}}\\&\quad -a^{T\cup \{l\}}\underset{j\in T\cup \{l\}}{\sum }d_jq_{j}-t^{T\cup \{l\}}\underset{j\in T\cup \{l\}}{\sum }d_j\theta _{j}q_{j}\\&\quad +f^{T}+a^{T}\underset{j\in T}{\sum }d_jq_{j} +t^{T}\underset{j\in T}{\sum }d_j\theta _{j}q_{j}. \end{aligned}$$

Given that

$$\begin{aligned} c(T\cup \{l\})\le f^{S\cup \{l\}}+a^{S\cup \{l\}}\underset{j\in T\cup \{l\}}{\sum }d_jq_{j}+t^{S\cup \{l\}}\underset{j\in T\cup \{l\}}{\sum } d_j\theta _{j}q_{j}, \end{aligned}$$

and

$$\begin{aligned} c(S)\le f^{T}+a^{T}\underset{j\in S}{\sum }d_jq_{j} +t^{T}\underset{j\in S}{\sum }d_j\theta _{j}q_{j}, \end{aligned}$$

we have

$$\begin{aligned} h(S,\{l\})-h(T,\{l\})\ge \big (t^{T}-t^{S\cup \{l\}}\big )\underset{j\in T-S}{\sum }d_j\theta _{j}q_{j}+\big (\ a^{T}-a^{S\cup \{l\}}\big )\underset{j\in T-S}{\sum }d_jq_{j}. \end{aligned}$$
(A.6)

Combining Condition A and Condition B with (A.5) and (A.6), respectively, we obtain

$$\begin{aligned} h(S,l)-h(T,l)\ge \big (f^{T}-f^{S\cup \{l\}}\big )\left( \delta d_l\theta _{l}q_{l} -\frac{a^Td_lq_{l}}{f^T}\right) , \end{aligned}$$
(A.7)
$$\begin{aligned} h(S,l)-h(T,l)\ge \big (f^{S\cup \{l\}}-f^{T}\big )\left( \underset{j\in T-S}{\sum }\delta d_j\theta _{j}q_{j}-\underset{j\in T-S}{\sum }\frac{a^{S\cup \{l\}}d_jq_{j}}{f^{S\cup \{l\}}}\right) . \end{aligned}$$
(A.8)

When \(f_i\theta _{\min }\delta \ge a_i\), we have \(\delta d_l\theta _{l}q_{l}-\frac{a^Td_lq_{l}}{f^T}\ge 0\) and \(\underset{j\in T-S}{\sum }\delta d_j\theta _{j}q_{j}-\underset{j\in T-S}{\sum }\frac{a^{S\cup \{l\}}d_jq_{j}}{f^{S\cup \{l\}}}\ge 0\). Furthermore if \(f^{S\cup \{l\}}\le f^{T}\), then from (A.7) we have \(h(S,l)-h(T,l)\ge 0\); otherwise from (A.8) we get \(h(S,l)-h(T,l)\ge 0\).

When \(f_i\theta _{\max }\delta \le a_i\), we have \(\delta d_l\theta _{l}q_{l} -\frac{a^Td_lq_{l}}{f^T}\le 0\) and \(\underset{j\in T-S}{\sum }\delta d_j\theta _{j} q_{j}-\underset{j\in T-S}{\sum }\frac{a^{S\cup \{l\}}d_jq_{j}}{f^{S\cup \{l\}}}\le 0\). Furthermore if \(f^{S\cup \{l\}}\le f^{T}\), from (A.8) we have \(h(S,l)-h(T,l)\ge 0\); otherwise from (A.7) we have \(h(S,l)-h(T,l)\ge 0\).

The analysis above shows that \(c(S\cup \{l\})-c(S)\ge c(T\cup \{l\})-c(T)\). This establishes the concavity of the game \((N,c_{L})\). \(\square \)

Appendix 3: Proof of Proposition 7

Proof

Suppose that \(c_{E}(S)=\underset{k\in F}{\min }c_{E}(S)_{k}\) on the set S, T (\(S,T\subset N\)). For notational convenience, in this proof use c(S) to denote \(c_{E}(S)\) (other notations are simplified in a similar way). For \(S,T\subset N\), and \(S\cap T=\emptyset \), we have

$$\begin{aligned} c(S)=f^{S}+\underset{j\in S}{\sum }q_{j}\big (1-e^{-\theta _{j}d_jt^{S}}\big )+a^{S}\underset{j\in S}{\sum }d_jq_{j}, \end{aligned}$$

and

$$\begin{aligned} c(T)=f^{T}+\underset{j\in T}{\sum }q_{j}\big (1-e^{-\theta _{j}d_jt^{T}}\big )+a^{T} \underset{j\in T}{\sum }d_jq_{j}. \end{aligned}$$

Given that

$$\begin{aligned} c(S\cup T)\le f^{S}+\underset{j\in S\cup T}{\sum }q_{j}\big (1-e^{-\theta _{j}d_jt^{S}}\big )+a^{S}\underset{j\in S\cup T}{\sum }d_jq_{j}, \end{aligned}$$

and

$$\begin{aligned} c(S\cup T)\le f^{T}+\underset{j\in S\cup T}{\sum }q_{j} \big (1-e^{-\theta _{j}d_jt^{T}}\big )+a^{T}\underset{j\in S\cup T}{\sum }d_jq_{j}, \end{aligned}$$

then

$$\begin{aligned} c(S,T)\le -f^{S}+\underset{j\in S}{\sum }q_{j}\big (e^{-\theta _{j}d_jt^{S}} -e^{-\theta _{j}d_jt^{T}}\big )+\big (a^{T}-a^{S}\big )\underset{j\in S}{\sum }d_jq_{j}, \end{aligned}$$
(A.9)

and

$$\begin{aligned} c(S,T)\le -f^{T}+\underset{j\in T}{\sum }q_{j}\big (e^{-\theta _{j}d_jt^{T}} -e^{-\theta _{j}d_jt^{S}}\big )+\big (a^{S}-a^{T}\big )\underset{j\in T}{\sum }d_jq_{j}. \end{aligned}$$
(A.10)

If \(t^{T}\ge t^{S}\), then it follows from Lemma 1 that

$$\begin{aligned} \left( e^{-\theta _{j}d_jt^{S} }-e^{-\theta _{j}d_jt^{T}}\right) \le \theta _{j}d_j\big (t^{T}-t^{S}\big ). \end{aligned}$$

From (A.9), we have

$$\begin{aligned} c(S,T)\le -f^{S}+\big (t^{T}-t^{S}\big )\underset{j\in S}{\sum }d_j\theta _{j}q_{j} +\big (a^{T}-a^{S}\big )\underset{j\in S}{\sum }d_jq_{j}. \end{aligned}$$

Combining with Condition B, we have

$$\begin{aligned} c(S,T)\le -f^{S}+\big (t^{T}-t^{S}\big )\left( \underset{j\in S}{\sum }d_j\theta _{j} q_{j}-\frac{1}{\delta }\underset{j\in S}{\sum }\frac{a^Sd_jq_{j}}{f^S}\right) . \end{aligned}$$
(A.11)

If \(t^{T}<t^{S}\), then it follows from Lemma 1 that

$$\begin{aligned} (e^{-\theta _{j}d_jt^{T} }-e^{-\theta _{j}d_jt^{S}})\le \theta _{j}d_j(t^{S}-t^{T}). \end{aligned}$$

From (A.10), we have

$$\begin{aligned} c(S,T)\le -f^{T}+(t^{S}-t^{T})\underset{j\in T}{\sum }d_j\theta _{j}q_{j} +(a^{S}-a^{T})\underset{j\in T}{\sum }d_jq_{j}. \end{aligned}$$

Combining with Condition B, we have

$$\begin{aligned} c(S,T)\le -f^{T}+(t^{S}-t^{T})\left( \underset{j\in T}{\sum }d_j\theta _{j} q_{j}-\frac{1}{\delta }\underset{j\in T}{\sum }\frac{a^Td_jq_{j}}{f^T}\right) . \end{aligned}$$
(A.12)

Given that

$$\begin{aligned} \theta _{\max }\le \frac{a_j}{f_j\delta }, \end{aligned}$$

then

$$\begin{aligned} \underset{j\in S}{\sum }d_j\theta _{j}q_{j}-\frac{1}{\delta }\underset{j\in S}{\sum }\frac{a^Sd_jq_{j}}{f^S}\le 0, \end{aligned}$$

and

$$\begin{aligned} \underset{j\in T}{\sum }d_j\theta _{j}q_{j}-\frac{1}{\delta }\underset{j\in T}{\sum }\frac{a^Td_jq_{j}}{f^T}\le 0. \end{aligned}$$

Therefore \(c(S,T)<0\). When \(t^{T}\ge t^{S}\), from (A.11), we have \(c(S,T)<0\). Otherwise, (A.12) yields \(c(S,T)\le -f^{T}<0\). Similar to the proof of Proposition 3, we can prove \(c(S)=\underset{k\in F}{\min }c(S)_{k}\), for all \(S\in N\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cai, X. & Zeng, Y. Cost allocation for less-than-truckload collaboration among perishable product retailers. OR Spectrum 38, 81–117 (2016). https://doi.org/10.1007/s00291-015-0424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-015-0424-9

Keywords

Navigation