First-order logics: some characterizations and closure properties | Acta Informatica Skip to main content
Log in

First-order logics: some characterizations and closure properties

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

The characterization of the class of FO[+]-definable languages by some generating or recognizing device is still an open problem. We prove that, restricted to word bounded languages, this class coincides with the class of semilinear languages. We also study the closure properties of the classes of languages definable in FO[+1], FO[<], FO[+] and FOC[+] under the main classical operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajtai M.: \({\Sigma_1^1}\) -Formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behle C., Krebs A., Lange K.-J., McKenzie P.: Low uniform versions of NC1. Electron. Colloquium Comput. Complex. (ECCC) 18, 95 (2011)

    Google Scholar 

  3. Behle, C., Lange, K.-J.: FO[<]-Uniformity. In: Proceedings of the IEEE Conference Computational Complexity, pp. 183–189 (2006)

  4. Büchi J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    Article  MATH  Google Scholar 

  5. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 118–161. North Holland (1963)

  6. Etessami K.: Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst. Sci. 54(3), 400–411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flajolet, P., Steyaert, J.: Complexity of classes of languages and operators. Rap. de Recherche 92, IRIA Laboria (1974)

  8. Furst M., Saxe J.B., Sipser M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Ginsburg S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  11. Ginsburg S., Spanier E.H.: Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113, 333–368 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Harrison M.A.: Introduction to formal language theory. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  13. Ibarra O.: Simple matrix languages. Inf Control 17, 359–394 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ibarra O.: A note on semilinear sets and bounded-reversal multihead pushdown automata. Inf. Process. Lett. 3, 25–28 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ibarra O., Jiang T., Ravikumar B.: Some subclasses of context-free languages in NC1. Inf. Process. Lett. 29, 111–117 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Immerman N.: Expressibility and parallel complexity. SIAM J. Comput. 18, 625–638 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lange, K.-J.: Some results on majority quantifiers over words. In: IEEE Conference on Computational Complexity, pp. 123–129 (2004)

  18. Lange, K.-J., McKenzie, P.: On the complexity of free monoid morphisms. In: Chwa, K.-Y., Ibarra, O.H (eds.) Proceedings of the ISAAC98, LNCS vol. 1533, pp. 247–256. Springer, New York (1998)

  19. Lautemann C., McKenzie P., Schwentick T., Vollmer H.: The descriptive complexity approach to LOGCFL. J. Comput. Syst. Sci. 62, 629–652 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mix Barrington D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)

    Article  Google Scholar 

  21. Mix Barrington D.A., Corbett J.: On the relative complexity of some languages in NC1. Inf. Process. Lett. 32, 251–256 (1989)

    Article  MATH  Google Scholar 

  22. Mix Barrington D.A., Immerman N., Straubing H.: On uniformity within NC1. J. Comput. Syst. Sci. 41, 274–306 (1990)

    Article  MATH  Google Scholar 

  23. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes-Rendus du I Congrès de Mathématiciens des Pays Slaves, pp. 92–101 (1929)

  24. Robinson, D.: Parallel algorithms for group word problems. Doctoral Dissertation, Mathematics Dept., University of California, San Diego (1993)

  25. Roy A., Straubing H.: Definability of languages by generalized first-order formulas over \({\mathbb{N}^+}\) . SIAM J. Comput. 37, 502–521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roychowdhury V., Siu K.-Y., Orlitsky A.: Neural models and spectral methods. In: Roychowdhury, V., Siu, K.-Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 3–36. Kluwer, Amsterdam (1994)

    Chapter  Google Scholar 

  27. Ruzzo W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22, 365–383 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schweikardt N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)

    Article  MathSciNet  Google Scholar 

  29. Straubing H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  30. Sudborough I.H.: On tape-bounded complexity classes and multihead finite automata. J. Comput. Syst. Sci. 10, 62–76 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wegener I.: The Complexity of Boolean Functions. Teubner, Stuttgart (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mereghetti.

Additional information

This work was partially supported by the Italian MURST under the project “PRIN: Aspetti matematici e applicazioni emergenti degli automi e dei linguaggi formali: metodi probabilistici e combinatori in ambito di linguaggi formali”, and by CRUI/DAAD under the project “Programma Vigoni: Reducing complexity by introducing structure”.

A preliminary version has been published in the Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choffrut, C., Malcher, A., Mereghetti, C. et al. First-order logics: some characterizations and closure properties. Acta Informatica 49, 225–248 (2012). https://doi.org/10.1007/s00236-012-0157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-012-0157-z

Keywords

Navigation