Abstract
The characterization of the class of FO[+]-definable languages by some generating or recognizing device is still an open problem. We prove that, restricted to word bounded languages, this class coincides with the class of semilinear languages. We also study the closure properties of the classes of languages definable in FO[+1], FO[<], FO[+] and FOC[+] under the main classical operations.
Similar content being viewed by others
References
Ajtai M.: \({\Sigma_1^1}\) -Formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)
Behle C., Krebs A., Lange K.-J., McKenzie P.: Low uniform versions of NC1. Electron. Colloquium Comput. Complex. (ECCC) 18, 95 (2011)
Behle, C., Lange, K.-J.: FO[<]-Uniformity. In: Proceedings of the IEEE Conference Computational Complexity, pp. 183–189 (2006)
Büchi J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)
Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 118–161. North Holland (1963)
Etessami K.: Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst. Sci. 54(3), 400–411 (1997)
Flajolet, P., Steyaert, J.: Complexity of classes of languages and operators. Rap. de Recherche 92, IRIA Laboria (1974)
Furst M., Saxe J.B., Sipser M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 13–27 (1984)
Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
Ginsburg S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)
Ginsburg S., Spanier E.H.: Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113, 333–368 (1964)
Harrison M.A.: Introduction to formal language theory. Addison-Wesley, Reading (1978)
Ibarra O.: Simple matrix languages. Inf Control 17, 359–394 (1970)
Ibarra O.: A note on semilinear sets and bounded-reversal multihead pushdown automata. Inf. Process. Lett. 3, 25–28 (1974)
Ibarra O., Jiang T., Ravikumar B.: Some subclasses of context-free languages in NC1. Inf. Process. Lett. 29, 111–117 (1988)
Immerman N.: Expressibility and parallel complexity. SIAM J. Comput. 18, 625–638 (1989)
Lange, K.-J.: Some results on majority quantifiers over words. In: IEEE Conference on Computational Complexity, pp. 123–129 (2004)
Lange, K.-J., McKenzie, P.: On the complexity of free monoid morphisms. In: Chwa, K.-Y., Ibarra, O.H (eds.) Proceedings of the ISAAC98, LNCS vol. 1533, pp. 247–256. Springer, New York (1998)
Lautemann C., McKenzie P., Schwentick T., Vollmer H.: The descriptive complexity approach to LOGCFL. J. Comput. Syst. Sci. 62, 629–652 (2001)
Mix Barrington D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150–164 (1989)
Mix Barrington D.A., Corbett J.: On the relative complexity of some languages in NC1. Inf. Process. Lett. 32, 251–256 (1989)
Mix Barrington D.A., Immerman N., Straubing H.: On uniformity within NC1. J. Comput. Syst. Sci. 41, 274–306 (1990)
Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes-Rendus du I Congrès de Mathématiciens des Pays Slaves, pp. 92–101 (1929)
Robinson, D.: Parallel algorithms for group word problems. Doctoral Dissertation, Mathematics Dept., University of California, San Diego (1993)
Roy A., Straubing H.: Definability of languages by generalized first-order formulas over \({\mathbb{N}^+}\) . SIAM J. Comput. 37, 502–521 (2007)
Roychowdhury V., Siu K.-Y., Orlitsky A.: Neural models and spectral methods. In: Roychowdhury, V., Siu, K.-Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 3–36. Kluwer, Amsterdam (1994)
Ruzzo W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22, 365–383 (1981)
Schweikardt N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)
Straubing H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)
Sudborough I.H.: On tape-bounded complexity classes and multihead finite automata. J. Comput. Syst. Sci. 10, 62–76 (1975)
Wegener I.: The Complexity of Boolean Functions. Teubner, Stuttgart (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the Italian MURST under the project “PRIN: Aspetti matematici e applicazioni emergenti degli automi e dei linguaggi formali: metodi probabilistici e combinatori in ambito di linguaggi formali”, and by CRUI/DAAD under the project “Programma Vigoni: Reducing complexity by introducing structure”.
A preliminary version has been published in the Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010).
Rights and permissions
About this article
Cite this article
Choffrut, C., Malcher, A., Mereghetti, C. et al. First-order logics: some characterizations and closure properties. Acta Informatica 49, 225–248 (2012). https://doi.org/10.1007/s00236-012-0157-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00236-012-0157-z