Counting the Number of Perfect Matchings in K 5-Free Graphs | Theory of Computing Systems
Skip to main content

Counting the Number of Perfect Matchings in K 5-Free Graphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Counting the number of perfect matchings in graphs is a computationally hard problem. However, in the case of planar graphs, and even for K 3,3-free graphs, the number of perfect matchings can be computed efficiently. The technique to achieve this is to compute a Pfaffian orientation of a graph. In the case of K 5-free graphs, this technique will not work because some K 5-free graphs do not have a Pfaffian orientation. We circumvent this problem and show that the number of perfect matchings in K 5-free graphs can be computed in polynomial time. We also parallelize the sequential algorithm and show that the problem is in TC2. We remark that our results generalize to graphs without singly-crossing minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barahona, F.: Balancing signed toroidal graphs in polynomial time. Technical report, University of Chile (1983)

  2. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 436–441 (1989)

  3. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cayley, A.: Sur les déterminants gauches. J. Pure Appl. Math. 38, 93–96 (1847)

    MathSciNet  Google Scholar 

  5. Curticapean, R.: Counting perfect matchings in graphs that exclude a single-crossing minor. arXiv:1406.4056 (2014)

  6. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. J. Comput. Syst. Sci. 69(2), 166–195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Isomorphism for K 3,3-free and K 5-free graphs is in log-space. In: Proceedings of the 29th Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 145–156 (2009)

  8. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 143–152 (2010)

  10. Galbiati, G., Maffioli, F.: On the computation of pfaffians. Discrete Appl. Math. 51(3), 269–275 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  12. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  13. Hopcroft, J.E., Tarjan, R.E.: A \(V\log V\) algorithm for isomorphism of triconnected planar graphs. J. Comput. Syst. Sci. 7 (3), 323–331 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp 43–110. Academic, New York (1967)

  15. Kulkarni, R., Mahajan, M., Varadarajan, K.: Some perfect matchings and perfect half-integral matchings in NC. Chic. J. Theor. Comput. Sci. 2008(4), 1–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuratowski, K.: Sur le probléme des courbes gauches en topologie. Fundam. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  17. Little, C.H.C.: An extension of Kasteleyn’s method of enumerating the 1-factors of planar graphs. In: Holton, D.A. (ed.) Combinatorial Mathematics, volume 403 of Lecture Notes in Mathematics, pp 63–72. Springer, Berlin Heidelberg (1974)

  18. Miller, G.L., Ramachandran, V.: A new graph triconnectivity algorithm and its parallelization. Combinatorica 12, 53–76 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahajan, M., Subramanya, P.R., Vinay, V.: The combinatorial approach yields an NC algorithm for computing Pfaffians. Discrete Appl. Math. 143(1–3), 1–16 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.: Excluding a graph with one crossing. In: Graph Structure Theory, pp. 669–675. American Mathematical Society (1993)

  21. Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)

    MATH  Google Scholar 

  22. Thierauf, T., Wagner, F.: Reachability in K 3,3-free graphs and K 5-free graphs is in unambiguous log-space. Chic. J. Theor. Comput. Sci., To appear (2014)

  23. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Valiant, L.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vazirani, V.: NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Inf. Comput. 80(2), 152–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114 (1), 570–590 (1937)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We want to thank Radu Curticapean for pointing us to the literature about graphs that have no singly-crossing minor which lead to Corollary 5.11. We are greatful to Rohit Gurjar for indicating that our result on counting perfect matchings also yields the construction of a perfect matching (Corollary 5.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Thierauf.

Additional information

Research supported by DFG grant TH 472/4-1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straub, S., Thierauf, T. & Wagner, F. Counting the Number of Perfect Matchings in K 5-Free Graphs. Theory Comput Syst 59, 416–439 (2016). https://doi.org/10.1007/s00224-015-9645-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-015-9645-1

Keywords