Strategic Multiway Cut and Multicut Games | Theory of Computing Systems Skip to main content
Log in

Strategic Multiway Cut and Multicut Games

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider cut games where players want to cut themselves off from different parts of a network. These games arise when players want to secure themselves from areas of potential infection. For the game-theoretic version of Multiway Cut, we prove that the price of stability is 1, i.e., there exists a Nash equilibrium as good as the centralized optimum. For the game-theoretic version of Multicut, we show that there exists a 2-approximate equilibrium as good as the centralized optimum. We also give poly-time algorithms for finding exact and approximate equilibria in these games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2

Similar content being viewed by others

Notes

  1. Recall that a (pure-strategy) Nash equilibrium is a solution where no single player can switch her strategy and become better off, given that the other players keep their strategies fixed.

References

  1. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation game. In: SODA (2006)

    Google Scholar 

  2. Anshelevich, E., Caskurlu, B.: Exact and approximate equilibria for optimal group network formation. Theor. Comp. Sci. 412(39), 5298–5314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anshelevich, E., Caskurlu, B.: Price of stability in survivable network design. Theory Comput. Syst. 49(1), 98–138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. Theory Comput. 4, 77–109 (2008)

    Article  MathSciNet  Google Scholar 

  6. Aspnes, J., Chang, K., Yampolskiy, A.: Innoculation strategies for victims of viruses and the sum-of-squares problem. J. Comput. Syst. Sci. 72(6), 1077–1093 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure Nash equilibrium in cut, party affiliation and satisfiability games. In: ACM Conference on Electronic Commerce (EC 2010)

    Google Scholar 

  8. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. J. Comput. Syst. Sci. 60(3), 564–574 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardinal, J., Hoefer, M.: Non-cooperative facility location and covering games. Theor. Comp. Sci. 411(16–18), 1855–1876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Roughgarden, T.: Network design with weighted players. Theory Comput. Syst. 45(2), 302–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, H., Roughgarden, T., Valiant, G.: Designing networks with good equilibria. In: SODA (2008)

    Google Scholar 

  12. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. In: STACS (2006)

    Google Scholar 

  13. Engelberg, R., Könemann, J., Leonardi, S., Naor, J.: Cut problems in graphs with a budget constraint. J. Discrete Algorithms 5(2) (2007)

  14. Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. Games Econ. Behav. 67(1), 51–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, S., Shenker, S.: On a network creation game. In: PODC (2003)

    Google Scholar 

  16. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: STOC (2004)

    Google Scholar 

  17. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for designing undirected networks with fair cost allocations. In: Proceedings of ICALP 2006, pp. 608–618 (2006)

    Google Scholar 

  18. Gourves, L., Monnot, J.: On strong equilibria in the max cut game. In: WINE (2009)

    Google Scholar 

  19. Hamilton, S.N., Miller, W.L., Ott, A., Saydjari, O.S.: Challenges in applying game theory to the domain of information warfare. In: 4th Information Survivability Workshop (ISW-2001/2002). Vancouver, Canada (2002)

    Google Scholar 

  20. Hoefer, M.: Cost sharing and clustering under distributed competition. Ph.D. Thesis, Universitat Konstanz (2007)

  21. Hoefer, M.: Non-cooperative tree creation. Algorithmica 53(1), 104–131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoefer, M.: Strategic cooperation in cost sharing games. In: Proc. 6th Intl. Workshop on Internet & Network Economics (WINE 2010). LNCS, vol. 6484 (2010)

    Google Scholar 

  23. Hoefer, M., Krysta, P.: Geometric network design with selfish agents. In: COCOON 2005. Combinatorics Conference (COCOON 2005). Lecture Notes in Computer Science, vol. 3595, pp. 167–178 (2005)

    Google Scholar 

  24. Jackson, M.: A survey of models of network formation: stability and efficiency. In: Demange, G., Wooders, M. (eds.) Group Formation in Economics: Networks, Clubs and Coalitions. Cambridge Univ. Press, Cambridge (2005)

    Google Scholar 

  25. Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding of minimum multiway cut. Math. Oper. Res. 29(3), 436–461 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kearns, M., Ortiz, L.: Algorithms for interdependent security games. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

  27. Kunreuther, H., Heal, G.: Interdependent security. J. Risk Uncertain. (Special Issue on Terrorist Risks) (2003)

  28. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2007)

    Google Scholar 

  29. Mavronicolas, M., Michael, L., Papadopoulou, V.G., Philippou, A., Spirakis, P.G.: The price of defense. In: 31st International Symposium on Mathematical Foundations of Computer Science (2006)

    Google Scholar 

  30. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Syverson, P.F.: A different look at secure distributed computation. In: IEEE Computer Security Foundations Workshop (CSFW 10), June 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot Anshelevich.

Additional information

A preliminary version of this paper appeared in WAOA 2010.

This work was supported in part by NSF grants CCF-0914782 and CNS-1017932.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anshelevich, E., Caskurlu, B. & Hate, A. Strategic Multiway Cut and Multicut Games. Theory Comput Syst 52, 200–220 (2013). https://doi.org/10.1007/s00224-011-9380-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9380-1

Keywords

Navigation