Asymptotic expansion techniques for singularly perturbed boundary integral equations | Numerische Mathematik
Skip to main content

Asymptotic expansion techniques for singularly perturbed boundary integral equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

For the case of singularly perturbed elliptic transmission problems we demonstrate the use of asymptotic expansion techniques both for establishing regularity results for the solution and for deriving a priori error estimates for boundary element Galerkin discretisation. The dependence of the corresponding bounds on the singular perturbation parameter is studied in detail. This dependence clearly manifests itself in numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Subscripts attached to constants hint at their dependence on parameters.

References

  1. Bendali, A., Lemrabet, K.: Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57(3), 199–227 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  3. Buffa, A., Christiansen, S.: A dual finite element complex on the barycentric refinement. Math. Comp. 76(260), 1743–1769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Concepts Development Team: Webpage of Numerical C++ Library Concepts 2 (2012). http://www.concepts.math.ethz.ch

  5. Engquist, B., Nédélec, J.C.: Effective boundary conditions for acoustic and electromagnetic scattering in thin layers. Rapport interne du C.M.A.P, Ecole Polytechnique Paris (1993)

  6. Frauenfelder, P., Lage, C.: Concepts: an object-oriented software package for partial differential equations. Math. Model. Numer. Anal. 36(5), 937–951 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haddar, H., Joly, P., Nguyen, H.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15(8), 1273–1300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haddar, H., Joly, P., Nguyen, H.M.: Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18(10), 1787–1827 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv. Appl. Math. 37(1), 39–91 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Hiptmair, R., Mao, S.P.: Stable multilevel splittings of boundary edge element spaces. BIT 52(3), 661–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Meury, P.: Stable Finite Element Boundary Element Galerkin Schemes for Acoustic and Electromagnetic Scattering. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2007)

  13. Poignard, C.: Asymptotics for steady-state voltage potentials in a bidimensional highly contrasted medium with thin layer. Math. Meth. Appl. Sci. 31(4), 443–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  15. Schmidt, K., Chernov, A.: Robust families of transmission conditions of high order for thin conducting sheets. Matheon report # 1044, Research Center Matheon, Berlin (2013). https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1253

  16. Schmidt, K., Chernov, A.: A unified analysis of transmission conditions for thin conducting sheets in the time-harmonic eddy current model. SIAM J. Appl. Math. 73(6), 1980–2003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schmidt, K., Chernov, A.: Robust transmission conditions of high order for thin conducting sheets in two dimensions. IEEE Trans. Magn. 50(2), 41–44 (2014)

    Article  Google Scholar 

  18. Schmidt, K., Hiptmair, R.: Asymptotic boundary element methods for thin conducting sheets. Preprint 2013–2019, Seminar for Applied Mathematics, ETH Zürich (2013). https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2013/2013-19.pdf

  19. Schmidt, K., Hiptmair, R.: Asymptotic boundary element methods for thin conducting sheets. Discrete Contin. Dyn. Syst. Ser. 8(3), 619–647 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Schmidt, K., Tordeux, S.: High order transmission conditions for thin conductive sheets in magneto-quasistatics. ESAIM Math. Model. Numer. Anal. 45(6), 1115–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Steinbach, O.: Numerische Näherungsverfahren für elliptische Randwertprobleme. Finite Elemente und Randelemente. B.G. Teubner-Verlag (2003)

  22. Sterz, O., Schwab, C.: A scalar boundary integrodifferential equation for eddy current problems using an impedance boundary condition. Comput. Vis. Sci. 3(4), 209–217 (2001)

    Article  MATH  Google Scholar 

  23. Yuferev, S., Ida, N.: Surface Impedance Boundary Conditions: A Comprehensive Approach. CRC Press, Boca Raton (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kersten Schmidt.

A Discrete dual projections

A Discrete dual projections

Given a triangulation \(\varGamma _{h}\) of \(\varGamma \) let \(S^{0}_{1}(\widehat{\varGamma }_{h})\) be a space of continuous piecewise linear functions on its barycentric refinement \(\widehat{\varGamma }_h\) for which nodal values at the barycentres of cells of \(\varGamma _{h}\) provide valid degrees of freedom. The construction of suitable \(S^{0}_{1}(\widehat{\varGamma }_{h})\) on a triangulated curve is described in [9, Sect. 4.4.1], and in [3, Sect. 2] for a triangulated surface. In each case simple local computations establish

$$\begin{aligned} \sup \limits _{v_{h}\in S^{0}_{1}(\widehat{\varGamma }_{h})\setminus \{0\}} \frac{|\left<\psi _{h},v_{h}\right>|}{\left\| v_{h}\right\| _{L^2({\varGamma })}} \ge C_{\mathrm {ST}} \left\| \psi _{h}\right\| _{L^2({\varGamma })}\quad \forall \psi _{h}\in S^{-1}_{0}(\varGamma _{h})\;, \end{aligned}$$
(43)

with a constant depending only on the shape-regularity of \(\varGamma _{h}\). As an immediate consequence of (43) we have the dual inf-sup condition

$$\begin{aligned} \sup \limits _{\psi _{h}\in S^{-1}_{0}({\varGamma }_{h})\setminus \{0\}} \frac{|\left<\psi _{h},v_{h}\right>|}{\left\| \psi _{h}\right\| _{L^2({\varGamma })}} \ge C_{\mathrm {ST}} \left\| v_{h}\right\| _{L^2({\varGamma })}\quad \forall v_{h}\in S^{0}_{1}(\widehat{\varGamma }_{h})\;. \end{aligned}$$
(44)

Thus we can define two projectors \(Q_{h}:L^2({\varGamma })\rightarrow S^{-1}_{0}(\varGamma _{h})\) and \(Q_{h}^{*}:L^2({\varGamma })\rightarrow S^{0}_{1}(\widehat{\varGamma }_{h})\) through

$$\begin{aligned} \left<Q_{h}\phi ,v_{h}\right> = \left<\phi ,v_{h}\right>\quad \forall v_{h}\in S^{0}_{1}(\widehat{\varGamma }_{h}),\quad \left<\psi _{h},Q_{h}^{*}v\right> = \left<\psi _{h},v\right>\quad \forall \psi _{h}\in S^{-1}_{0}(\varGamma _{h}).\nonumber \\ \end{aligned}$$
(45)

Both, \(Q_{h}\) and \(Q_{h}^{*}\) will be \(L^2({\varGamma })\)-continuous with norms bounded by \(C_{\mathrm {ST}}^{-1}\). Moreover,

$$\begin{aligned} \left\| Q_{h}^{*}v\right\| _{H^1({\varGamma })} \le C \left\| v\right\| _{H^1({\varGamma })}\quad \forall v\in H^1({\varGamma })\;, \end{aligned}$$
(46)

where \(C>0\) may also depend on the quasi-uniformity of \(\varGamma _{h}\). This estimate is a consequence of the continuity of the \(L^2({\varGamma })\)-orthogonal projection onto \(S^{0}_{1}(\widehat{\varGamma }_{h})\) in \(H^1({\varGamma })\). Then, interpolation between \(H^1({\varGamma })\) and \(L^2({\varGamma })\) immediately yields

(47)

Next, we appeal to the definition of the norm of and get

(48)

Thus we have established the following result.

Lemma 5

The projection \(Q_{h}\) defined in (45) can be extended to a bounded operator .

We remark that with the same arguments, this result can also be established for the standard \(L^2({\varGamma })\)-orthogonal projection onto \(S^{0}_{1}(\varGamma _{h})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, K., Hiptmair, R. Asymptotic expansion techniques for singularly perturbed boundary integral equations. Numer. Math. 137, 397–415 (2017). https://doi.org/10.1007/s00211-017-0881-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0881-y

Mathematics Subject Classification