Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure interaction | Numerische Mathematik Skip to main content
Log in

Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure interaction

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a unified convergence analysis of the generalized Schwarz method applied to a linear elliptic problem for a general interface (flat, cylindrical or spherical) in any dimension. In particular, we provide the exact convergence set of the interface symbols related to the operators involved in the transmission conditions. We also provide a general procedure to obtain estimates of the optimized interface symbols within the constants. We apply such general results to a simple fluid–structure interaction model problem given by the interaction between an incompressible, inviscid fluid and the wave equation. Finally, we assess the effectiveness of the theoretical findings through three-dimensional numerical experiments in the haemodynamic context, obtained by solving the coupling between the Navier–Stokes equations and the linear infinitesimal elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Astorino, M., Chouly, F., Fernández, M.: Robin based semi-implicit coupling in fluid–structure interaction: stability analysis and numerics. SIAM J. Sci. Comput. 31(6), 4041–4065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia, S., Nobile, F., Vergara, C.: Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 198(33–36), 2768–2784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid–structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)

    Article  MathSciNet  Google Scholar 

  5. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid–structure algorithms based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195(41–43), 5797–5812 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolean, V., Gander, M.J., Gerardo Giorda, L.: Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donea, J.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interaction. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)

    Article  MATH  Google Scholar 

  9. Dubois, O.: Optimized Schwarz methods with Robin conditions for the advection–diffusion equation. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, pp. 181–188. Springer-Verlag, New York (2006)

    Google Scholar 

  10. Fernández, M.A., Gerbeau, J.F., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4), 794–821 (2007)

    Article  MATH  Google Scholar 

  11. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  12. Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular Mathematics-Modeling and Simulation of the Circulatory System. Springer, Milan (2009)

  13. Formaggia, L., Quarteroni, A., Vergara, C.: On the physical consistency between three-dimensional and one-dimensional models in haemodynamics. J. Comput. Phys. 244, 97–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forster, C., Wall, W., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flow. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)

    Article  MathSciNet  Google Scholar 

  15. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerardo Giorda, L., Nobile, F., Vergara, C.: Analysis and optimization of Robin–Robin partitioned procedures in fluid–structure interaction problems. SIAM J. Numer. Anal. 48(6), 2091–2116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gigante, G., Pozzoli, M., Vergara, C.: Optimized Schwarz methods for the diffusion–reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51(6), 3402–3430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Nørsett, S.P., Wanner, G.: Springer Series in Computational Mathematics. Solving ordinary differential equations: nonstiff problems. Springer, Berlin (1993)

  20. Japhet, C.: Optimized Krylov–Ventcell method. Application to convection–diffusion problems. In: Bjorstad, P.E., Espedal, M.S., Keyes, D.E. (eds.) Proceedings of the Ninth International Conference on Domain Decomposition Methods, pp. 382–389 (1998)

  21. Japhet, C., Nataf, N., Rogier, F.: The optimized order 2 method. Application to convection–diffusion problems. Fut. Gen. Comput. Syst. 18, 17–30 (2001)

    Article  MATH  Google Scholar 

  22. Küttler, U., Wall, W.A.: Fixed-point fluidstructure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

    Article  MATH  Google Scholar 

  23. Lebedev, N.: Special Functions and Their Applications. Courier Dover Publications, New York (1972)

    MATH  Google Scholar 

  24. LifeV project: http://www.lifev.org (2004)

  25. Lions, P.L.: On the Schwarz alternating method III. In: Chan, T., Glowinki, R., Periaux, J., Widlund, O.B. (eds.) Proceedings of the Third International Symposium on Domain Decomposition Methods for PDE’s, pp. 202–223. SIAM, Philadelphia (1990)

    Google Scholar 

  26. Magoulès, F., Ivanyi, P., Topping, B.H.V.: Non-overlapping Schwarz method with optimized transmission conditions for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 193, 4797–4818 (2004)

    Article  MATH  Google Scholar 

  27. Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., Gerbeau, J.-F.: External tissue support and fluidstructure simulation in blood flows. Biomech. Model. Mechanobiol. 11(1–2), 1–18 (2012)

    Article  Google Scholar 

  28. Nobile, F., Pozzoli, M., Vergara, C.: Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics. Comput. Fluids 86, 470–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nobile, F., Pozzoli, M., Vergara, C.: J. Comput. Phys. 273, 598–617 (2014)

  30. Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nobile, F., Vergara, C.: Partitioned algorithms for fluid–structure interaction problems in haemodynamics. Milan J. Math. 80(2), 443–467 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qaddouria, A., Laayounib, L., Loiselc, S., Cotea, J., Gander, M.J.: Optimized Schwarz methods with an overset grid for the shallow-water equations: preliminary results. Appl. Numer. Math. 58, 459–471 (2008)

    Article  MathSciNet  Google Scholar 

  33. Stupfel, B.: Improved transmission conditions for a one-dimensional domain decomposition method applied to the solution of the Helmhotz equation. J. Comput. Phys. 229, 851–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Giacomo Gigante has been partially supported by the Italian PRIN 2010-2011 “Real and complex manifolds: geometry, topology and harmonic analysis”. Christian Vergara has been partially supported by the Italian MIUR PRIN09 project no. 2009Y4RC3B_001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vergara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigante, G., Vergara, C. Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure interaction. Numer. Math. 131, 369–404 (2015). https://doi.org/10.1007/s00211-014-0693-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0693-2

Mathematics Subject Classification

Navigation