An adaptive finite element method with asymptotic saturation for eigenvalue problems | Numerische Mathematik Skip to main content
Log in

An adaptive finite element method with asymptotic saturation for eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper discusses adaptive finite element methods for the solution of elliptic eigenvalue problems associated with partial differential operators. An adaptive method based on nodal-patch refinement leads to an asymptotic error reduction property for the computed sequence of simple eigenvalues and eigenfunctions. This justifies the use of the proven saturation property for a class of reliable and efficient hierarchical a posteriori error estimators. Numerical experiments confirm that the saturation property is present even for very coarse meshes for many examples; in other cases the smallness assumption on the initial mesh may be severe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000)

    Book  Google Scholar 

  2. Babuška, I., Osborn, J.E.: Eigenvalue Problems. Handbook of Numerical Analysis, vol. II. North Holland, Amsterdam (1991)

    Google Scholar 

  3. Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Third Ed., Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

    Book  Google Scholar 

  5. Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118(3), 401–427 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91(1), 1–12 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dörfler, W.: A convergent adaptive algorithm for Poisson‘s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110(3), 313–355 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations, Second Ed., Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010)

    Google Scholar 

  13. Ferraz-Leite, S., Ortner, C., Praetorius, D.: Convergence of simple adaptive Galerkin schemes based on \(h-h/2\) error estimators. Numer. Math. 116(2), 291–316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Neymeyr, K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Strang, G., Fix, G. J.: An Analysis of the Finite Element Method, Prentice-Hall Inc., Englewood Cliffs, N.J. (1973). Prentice-Hall Series in Automatic Computation

  18. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Stuttgart (1996)

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carstensen.

Additional information

Supported by the DFG Research Center MATHEON “Mathematics for key technologies”, and the DFG graduate school BMS “Berlin Mathematical School” in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carstensen, C., Gedicke, J., Mehrmann, V. et al. An adaptive finite element method with asymptotic saturation for eigenvalue problems. Numer. Math. 128, 615–634 (2014). https://doi.org/10.1007/s00211-014-0624-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0624-2

Mathematics Subject Classification (1991)

Navigation