Abstract
This paper discusses adaptive finite element methods for the solution of elliptic eigenvalue problems associated with partial differential operators. An adaptive method based on nodal-patch refinement leads to an asymptotic error reduction property for the computed sequence of simple eigenvalues and eigenfunctions. This justifies the use of the proven saturation property for a class of reliable and efficient hierarchical a posteriori error estimators. Numerical experiments confirm that the saturation property is present even for very coarse meshes for many examples; in other cases the smallness assumption on the initial mesh may be severe.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000)
Babuška, I., Osborn, J.E.: Eigenvalue Problems. Handbook of Numerical Analysis, vol. II. North Holland, Amsterdam (1991)
Bank, R.E., Smith, R.K.: A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal. 30(4), 921–935 (1993)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Third Ed., Texts in Applied Mathematics, vol. 15. Springer, New York (2008)
Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)
Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 118(3), 401–427 (2011)
Carstensen, C., Gedicke, J.: An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. SIAM J. Numer. Anal. 50(3), 1029–1057 (2012)
Dörfler, W., Nochetto, R.H.: Small data oscillation implies the saturation assumption. Numer. Math. 91(1), 1–12 (2002)
Dörfler, W.: A convergent adaptive algorithm for Poisson‘s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)
Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)
Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110(3), 313–355 (2008)
Evans, L.C.: Partial Differential Equations, Second Ed., Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010)
Ferraz-Leite, S., Ortner, C., Praetorius, D.: Convergence of simple adaptive Galerkin schemes based on \(h-h/2\) error estimators. Numer. Math. 116(2), 291–316 (2010)
Grubišić, L., Ovall, J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009)
Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011)
Neymeyr, K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002)
Strang, G., Fix, G. J.: An Analysis of the Finite Element Method, Prentice-Hall Inc., Englewood Cliffs, N.J. (1973). Prentice-Hall Series in Automatic Computation
Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Stuttgart (1996)
Acknowledgments
The authors would like to thank the anonymous referees for their valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the DFG Research Center MATHEON “Mathematics for key technologies”, and the DFG graduate school BMS “Berlin Mathematical School” in Berlin.
Rights and permissions
About this article
Cite this article
Carstensen, C., Gedicke, J., Mehrmann, V. et al. An adaptive finite element method with asymptotic saturation for eigenvalue problems. Numer. Math. 128, 615–634 (2014). https://doi.org/10.1007/s00211-014-0624-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-014-0624-2