Abstract
We propose and investigate novel max-flow models in the spatially continuous setting, with or without i priori defined supervised constraints, under a comparative study of graph based max-flow/min-cut. We show that the continuous max-flow models correspond to their respective continuous min-cut models as primal and dual problems. In this respect, basic conceptions and terminologies from discrete max-flow/min-cut are revisited under a new variational perspective. We prove that the associated nonconvex partitioning problems, unsupervised or supervised, can be solved globally and exactly via the proposed convex continuous max-flow and min-cut models. Moreover, we derive novel fast max-flow based algorithms whose convergence can be guaranteed by standard optimization theories. Experiments on image segmentation, both unsupervised and supervised, show that our continuous max-flow based algorithms outperform previous approaches in terms of efficiency and accuracy.
Similar content being viewed by others
References
Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Trans. Graph 23, 294–302 (2004)
Appleton, B., Talbot, H.: Globally optimal surfaces by continuous maximal flows. In: DICTA, pp 987–996 (2003)
Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 106–118 (2006)
Bae, E., Yuan, J., Tai, X.-C., Boycov, Y.: A fast continuous max-flow approach to non-convex multilabeling problems. Technical report CAM-10-62, UCLA (2010)
Bae, E., Tai, X.-C.: Efficient global minimization for the multiphase Chan-Vese model of image segmentation. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, vol. 5681, pp. 28–41. LNCS (2009)
Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vision 92(1), 112–129 (2011)
Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 359–374 (2001)
Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV, pp 26–33 (2003)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vision 28(2), 151–167 (2007)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1), 89–97 (2004)
Chan, T.F., Esedo\(\bar{{\rm g}}\)lu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5):1632–1648 (electronic), (2006)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Couprie, C., Grady, L., Talbot, H., Najman, L.: Combinatorial continuous maximum flow. SIAM J. Img. Sci 4(3), 905–930 (2011)
Dinitz, Y.: Dinitz’ algorithm: the original version and even’s version. Theor. Comput. Sci. 3859, 218–240 (2006)
Ekeland, I., Téman, R.: Convex analysis and variational problems. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
Giusti, E.: Minimal surfaces and functions of bounded variation. Australian National University, Canberra (1977)
Goldberg, A., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Technical report CAM09-06, UCLA, CAM (2009)
Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci 2(2), 323343 (2009)
Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Royal Stat. Soc. Series B 51, 271–279 (1989)
Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms. I, volume 305 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)
Hyman, J.M., Shashkov, M.J.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)
Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)
Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: CVPR, pp. 2993–3000, (2009)
Kohli, P., Pawan Kumar, M., Torr, P.H.S.: \(p^{3}\) and beyond: Move making algorithms for solving higher order functions. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1645–1656 (2009)
Kolmogorov, V.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV, pp. 564–571 (2005)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell 28(10), 1568–1583 (2006)
Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: European Conference on Computer Vision, pp. 82–96 (2002)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26, 65–81 (2004)
Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based on linear programming. Pattern Anal. Mach. Intell. 29, 1436–1453 (2007)
Kwatra, Vivek, Schoedl, Arno, Essa, Irfan, Turk, Greg, Bobick, Aaron: Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. Graphics SIGGRAPH 22(3), 277–286 (2003)
Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. Technical report, HCI, IWR, Uni. Heidelberg, IWR, Uni. Heidelberg (2008)
Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: CVPR (2007)
Lempitsky, Victor. S., Boykov, Y., Ivanov, D.V.: Oriented visibility for multiview reconstruction. In: ECCV’06, pp. 226–238 (2006)
Li, S.Z.: Markov random field modeling in image analysis. Springer, Secaucus (2001)
Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to mumford-shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)
Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comp., 75(255):1155–1174 (electronic), (2006)
Nozawa, R.: Examples of max-flow and min-cut problems with duality gaps in continuous networks. Math. Program 63(2), 213–234 (1994)
Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Paragios, N., Chen, Y., Faugeras, O.: Handbook Math Models Comput Vision. Springer-Verlag New York, Inc., Secaucus (2005)
Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 810–817, Miami (2009)
Strang, G.: Maximal flow through a domain. Math. Programm. 26, 123–143 (1983)
Strang, G.: Maximum flows and minimum cuts in the plane. Adv. Mech. Math. III, 1–11 (2008)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Agarwala, A., Rother, C.: A comparative study of energy minimization methods for markov random fields. In ECCV, pp. 16–29 (2006)
Vogiatzis, G., Esteban, C.H., Torr, P.H., Cipolla, R.: Multi-view stereo via volumetric graph-cuts and occlusion robust photo-consistency. PAMI 29(12), 2241–2246 (2007)
Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Trans. Inform. Theory 51, 3697–3717 (2002)
Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2217–2224. San Francisco (2010)
Yuan, Jing., Bae, Egil., Tai, Xue-Cheng., Boykov, Yuri.: A continuous max-flow approach to potts model. In: European Conference on Computer Vision, vol. 6316, pp. 379-392. LNCS (2010)
Acknowledgments
This research has been supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Accelerator Grant R3584A04, the Norwegian Research Council eVita project 166075 and eVita project 214889.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, J., Bae, E., Tai, XC. et al. A spatially continuous max-flow and min-cut framework for binary labeling problems. Numer. Math. 126, 559–587 (2014). https://doi.org/10.1007/s00211-013-0569-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-013-0569-x