A spatially continuous max-flow and min-cut framework for binary labeling problems | Numerische Mathematik Skip to main content
Log in

A spatially continuous max-flow and min-cut framework for binary labeling problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose and investigate novel max-flow models in the spatially continuous setting, with or without i priori defined supervised constraints, under a comparative study of graph based max-flow/min-cut. We show that the continuous max-flow models correspond to their respective continuous min-cut models as primal and dual problems. In this respect, basic conceptions and terminologies from discrete max-flow/min-cut are revisited under a new variational perspective. We prove that the associated nonconvex partitioning problems, unsupervised or supervised, can be solved globally and exactly via the proposed convex continuous max-flow and min-cut models. Moreover, we derive novel fast max-flow based algorithms whose convergence can be guaranteed by standard optimization theories. Experiments on image segmentation, both unsupervised and supervised, show that our continuous max-flow based algorithms outperform previous approaches in terms of efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Trans. Graph 23, 294–302 (2004)

    Article  Google Scholar 

  2. Appleton, B., Talbot, H.: Globally optimal surfaces by continuous maximal flows. In: DICTA, pp 987–996 (2003)

  3. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 106–118 (2006)

    Article  Google Scholar 

  4. Bae, E., Yuan, J., Tai, X.-C., Boycov, Y.: A fast continuous max-flow approach to non-convex multilabeling problems. Technical report CAM-10-62, UCLA (2010)

  5. Bae, E., Tai, X.-C.: Efficient global minimization for the multiphase Chan-Vese model of image segmentation. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, vol. 5681, pp. 28–41. LNCS (2009)

  6. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vision 92(1), 112–129 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  8. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 359–374 (2001)

    Google Scholar 

  9. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV, pp 26–33 (2003)

  10. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  11. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  12. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  13. Chan, T.F., Esedo\(\bar{{\rm g}}\)lu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5):1632–1648 (electronic), (2006)

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Couprie, C., Grady, L., Talbot, H., Najman, L.: Combinatorial continuous maximum flow. SIAM J. Img. Sci 4(3), 905–930 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dinitz, Y.: Dinitz’ algorithm: the original version and even’s version. Theor. Comput. Sci. 3859, 218–240 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ekeland, I., Téman, R.: Convex analysis and variational problems. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  18. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  19. Giusti, E.: Minimal surfaces and functions of bounded variation. Australian National University, Canberra (1977)

  20. Goldberg, A., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Technical report CAM09-06, UCLA, CAM (2009)

  22. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci 2(2), 323343 (2009)

    Article  MathSciNet  Google Scholar 

  23. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Royal Stat. Soc. Series B 51, 271–279 (1989)

    Google Scholar 

  24. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms. I, volume 305 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)

    Google Scholar 

  25. Hyman, J.M., Shashkov, M.J.: Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl. Numer. Math. 25(4), 413–442 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33(4), 81–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: CVPR, pp. 2993–3000, (2009)

  28. Kohli, P., Pawan Kumar, M., Torr, P.H.S.: \(p^{3}\) and beyond: Move making algorithms for solving higher order functions. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1645–1656 (2009)

    Article  Google Scholar 

  29. Kolmogorov, V.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV, pp. 564–571 (2005)

  30. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  31. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: European Conference on Computer Vision, pp. 82–96 (2002)

  32. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26, 65–81 (2004)

    Article  Google Scholar 

  33. Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based on linear programming. Pattern Anal. Mach. Intell. 29, 1436–1453 (2007)

    Google Scholar 

  34. Kwatra, Vivek, Schoedl, Arno, Essa, Irfan, Turk, Greg, Bobick, Aaron: Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. Graphics SIGGRAPH 22(3), 277–286 (2003)

    Article  Google Scholar 

  35. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. Technical report, HCI, IWR, Uni. Heidelberg, IWR, Uni. Heidelberg (2008)

  36. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: CVPR (2007)

  37. Lempitsky, Victor. S., Boykov, Y., Ivanov, D.V.: Oriented visibility for multiview reconstruction. In: ECCV’06, pp. 226–238 (2006)

  38. Li, S.Z.: Markov random field modeling in image analysis. Springer, Secaucus (2001)

    Book  MATH  Google Scholar 

  39. Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to mumford-shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)

    Article  Google Scholar 

  40. Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comp., 75(255):1155–1174 (electronic), (2006)

    Google Scholar 

  41. Nozawa, R.: Examples of max-flow and min-cut problems with duality gaps in continuous networks. Math. Program 63(2), 213–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  42. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Paragios, N., Chen, Y., Faugeras, O.: Handbook Math Models Comput Vision. Springer-Verlag New York, Inc., Secaucus (2005)

    Google Scholar 

  44. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 810–817, Miami (2009)

  45. Strang, G.: Maximal flow through a domain. Math. Programm. 26, 123–143 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  46. Strang, G.: Maximum flows and minimum cuts in the plane. Adv. Mech. Math. III, 1–11 (2008)

    Google Scholar 

  47. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Agarwala, A., Rother, C.: A comparative study of energy minimization methods for markov random fields. In ECCV, pp. 16–29 (2006)

  48. Vogiatzis, G., Esteban, C.H., Torr, P.H., Cipolla, R.: Multi-view stereo via volumetric graph-cuts and occlusion robust photo-consistency. PAMI 29(12), 2241–2246 (2007)

    Article  Google Scholar 

  49. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Trans. Inform. Theory 51, 3697–3717 (2002)

    Article  MathSciNet  Google Scholar 

  50. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2217–2224. San Francisco (2010)

  51. Yuan, Jing., Bae, Egil., Tai, Xue-Cheng., Boykov, Yuri.: A continuous max-flow approach to potts model. In: European Conference on Computer Vision, vol. 6316, pp. 379-392. LNCS (2010)

Download references

Acknowledgments

This research has been supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Accelerator Grant R3584A04, the Norwegian Research Council eVita project 166075 and eVita project 214889.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Cheng Tai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Bae, E., Tai, XC. et al. A spatially continuous max-flow and min-cut framework for binary labeling problems. Numer. Math. 126, 559–587 (2014). https://doi.org/10.1007/s00211-013-0569-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0569-x

Mathemetics Subject Classification

Navigation