Portfolio selection with drawdown constraint on consumption: a generalization model | Mathematical Methods of Operations Research Skip to main content
Log in

Portfolio selection with drawdown constraint on consumption: a generalization model

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this study, we generalize the results of Arun (The Merton problem with a drawdown constraint on consumption. Working paper, 2013) on the optimal consumption and investment problem of an infinitely lived agent who does not accept her consumption falling below a fixed proportion of her historically highest level, the so-called drawdown constraint on consumption. We extend the results to a general class of utility functions. We use the martingale method to study the dual problem, which involves the choice of a maximum consumption process. The dual problem can be formulated as a two-dimensional singular control problem, with the free boundary depending on a state variable of the maximum process. We establish the duality theorem and provide semi-closed form solutions regarding the optimal strategies. To highlight our methodology, we present some special cases of utility functions that do not allow for the dimension reduction considered in Arun (2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abel B (1990) Asset prices under habit formation and catching up with the Joneses. Am Econ Rev 80(2):38–42

    Google Scholar 

  • Angoshtari B, Bayrakar E, Young V (2019) Optimal dividend distribution under drawdown and ratcheting constraints on dividend rates. SIAM J Financ Math 10(2):547–577

    Article  Google Scholar 

  • Arun T (2013) The Merton problem with a drawdown constraint on consumption. Working paper

  • Bansal R, Kiku D, Yaron A (2012) An empirical evaluation of the long-run risks model for asset prices. Crit Finance Rev 1:183–221

    Article  Google Scholar 

  • Campbell J, Cochrane J (1999) By force of habit: a consumption-based explanation of aggregate stock market behavior. J Polit Econ 107:205–251

    Article  Google Scholar 

  • Chen K, Chiu MC, Shin YH, Wong HY (2020) Stochastic volatility asymptotics for optimal subsistence consumption and investment with bankruptcy. SIAM J Financ Math 10(4):977–1005

    Article  MathSciNet  Google Scholar 

  • Choi J (2013) Shadow prices and well-posedness in the problem of optimal investment and consumption with transaction costs. SIAM J Control Optim 51(6):4414–4449

    Article  MathSciNet  Google Scholar 

  • Constantinides G (1990) Habit formation: a resolution of the equity premium puzzle. J Polit Econ 98:519–543

    Article  Google Scholar 

  • Cox J, Huang C (1989) Optimal consumption and portfolio polices when asset prices follow a diffusion process. J Econ Theory 49(1):33–83

    Article  Google Scholar 

  • Davis M, Norman A (1990) Portfolio selection with transaction costs. Math Oper Res 15:676–713

    Article  MathSciNet  Google Scholar 

  • Deng S, Li X, Pham H, Yu X (2020) Optimal consumption with reference to past spending maximum. Working paper

  • Dixit A, Pindyck R (1996) Investment under uncertainty. Princeton University Press, Princeton

    Google Scholar 

  • Dixit A, Pindyck R (1998) Expandability, reversibility, and optimal capacity choice. NBER Working Paper

  • Duesenberry JS (1949) Income, saving, and the theory of consumer behaviory. Harvard University Press, Cambridge

    Google Scholar 

  • Dybvig P (1995) Dusenberry’s Racheting of Consumption: Optimal Dynamic Consumption and Investment Given Intolerance for any Decline in Standard of Living. Rev Econ Stud 62(2):287–31

    Article  Google Scholar 

  • Dybvig P, Rogers L (2013) High hopes and disappointment. Working paper

  • El Karoui N, Jeanblanc-Picqué M (1998) Optimization of consumption with labor income. Finance Stoch 2(4):409–440

    Article  Google Scholar 

  • Fouque J-P, Hu R (2017) Asymptotic optimal strategy for portfolio optimization in a slowly varying stochastic environment. SIAM J Control Optim 55:1990–2023

    Article  MathSciNet  Google Scholar 

  • Guasoni P, Humberman G, Ren D (2020) Shortfall aversion. Math Finance 30(3):869–920

    Article  MathSciNet  Google Scholar 

  • Harrison M (1985) Brownian motion and stochastic flow systems. Wiley, New York

    MATH  Google Scholar 

  • Jeon J, Koo H, Shin YH (2018) Portfolio selection with consumption ratcheting. J Econ Dyn Control 92:153–182

    Article  MathSciNet  Google Scholar 

  • Karatzas I, Lehoczky J, Shreve S (1987) Optimal portfolio and consumption decisions for a ”Small Investor” on a finite horizon. SIAM J Control Optim 25(6):1557–1586

    Article  MathSciNet  Google Scholar 

  • Karatzas I, Shreve S (1998) Methods of mathematical finance. Springer, New York

    Book  Google Scholar 

  • Knudsen T, Meister B, Zervos M (1998) Valuation of investments in real assets with implications for the stock prices. SIAM J Control Optim 36:2082–2102

    Article  MathSciNet  Google Scholar 

  • Liu H, Liu Y (2015) Optimal lifecyle consumption and investment with long term disability risk and consumption ratcheting. Working paper

  • Miao J, Zhang Y (2015) A duality approach to continuous-time contracting problems with limited commitment. J Econ Theory 159:929–988

    Article  MathSciNet  Google Scholar 

  • Oksendal B (2006) Stochastic differential equations. Springer, New York

    Google Scholar 

  • Peskir G, Shiryaev A (2006) Optimal stopping and free-boundary problems. Birkhäuser Verlag, Besel

    MATH  Google Scholar 

  • Pindyck R (1988) Irreversible investment, capacity choice, and the value of the firm. Am Econ Rev 78(5):969–985

    Google Scholar 

  • Riedel F (2009) Optimal consumption choice with intolerance for declining standard of living. J Math Econ 45:449–464

    Article  MathSciNet  Google Scholar 

  • Riedel F, Su X (2011) On irreversible investment. Finance Stochast 15:607–633

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyunghyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Junkee Jeon received support from the Young Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1C1C1A01007313). Kyunghyun Park received support from the NRF Global Ph.D Fellowship (2016H1A2A1908911)

Appendices

Appendix

Proof of Lemma 1

Note that the dual value function J(ym) can be written as follows:

$$\begin{aligned} J(y,m)= & {} \sup _{(M_t)_{t=0}^\infty \;\in {\mathcal {I}}(m)}\left\{ {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}{\tilde{u}}(y_t,m)dt\right] +{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}\int _{m}^{M_t}{\partial _m {\tilde{u}}}(y_t,\xi )d\xi dt\right] \right\} \nonumber \\= & {} \; \sup _{(M_t)_{t=0}^\infty \;\in {\mathcal {I}}(m)}\left\{ {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}\int _{m}^{M_t}{\partial _m {\tilde{u}}}(y_t,\xi )d\xi dt\right] \right\} +{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}{\tilde{u}}(y_t, m)dt\right] ,\nonumber \\ \end{aligned}$$
(54)

with \(\partial _m{\widetilde{u}}(y,\cdot )\equiv \frac{\partial {\widetilde{u}}}{\partial m}(y,\cdot )\).

Moreover, Fubini’s theorem implies that

$$\begin{aligned}&\sup _{(M_t)_{t=0}^\infty \;\in {\mathcal {I}}(m)}{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}\int _{m}^{M_t}{\partial _m {\tilde{u}}}(y_t,\xi )d\xi dt\right] \nonumber \\&\quad = \sup _{(M_t)_{t=0}^\infty \;\in {\mathcal {I}}(m)}{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}\int _{m}^{\infty }{} \mathbf{1}_{\{\xi <M_t\}}{\partial _m{\tilde{u}}}(y_t,\xi )d\xi dt\right] \nonumber \\&\quad = \int _{m}^{\infty }\sup _{ \tau _\xi }{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}{} \mathbf{1}_{\{t>\tau _\xi \}}{\partial _m{\tilde{u}}}(y_t,\xi )dt\right] d\xi \nonumber \\&\quad = \int _{m}^{\infty }\sup _{\tau _\xi }{\mathbb {E}}\left[ \int _{\tau _\xi }^\infty e^{-\delta t}{\partial _m{\tilde{u}}}(y_t,\xi )dt\right] d\xi . \end{aligned}$$
(55)

From (54) and (55), we have proved the desired result.

Proof of Lemma 2

By Feynman-Kac formula, \(J_0(y,m)\) satisfies the following ordinary differential equation (ODE):

$$\begin{aligned} \begin{aligned} {\mathcal {L}}J_0(y,m)+{\tilde{u}}(y,m)=0, \end{aligned} \end{aligned}$$
(56)

where the differential operator \({\mathcal {L}}\) is given by

$$\begin{aligned} {\mathcal {L}}= \dfrac{\theta ^2}{2}y^2\partial _{yy} + (\delta -r)y\partial _y - \delta . \end{aligned}$$

By applying the variation parameter method to the ODE (56), for any fixed \(m>0\) we obtain the following particular solution \(J_0^p(y,m)\):

$$\begin{aligned} \begin{aligned} J_0^p(y,m)\equiv \dfrac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2}\int _0^y \eta ^{-n_2-1}{\tilde{u}}(\eta ,m)d\eta +y^{n_1}\int _y^\infty \eta ^{-n_1-1}{\tilde{u}}(\eta ,m)d\eta \right] . \end{aligned} \end{aligned}$$

For \(y\ge u'(\kappa m)\),

$$\begin{aligned} \begin{aligned} \int _0^y \eta ^{-n_2-1}|{\tilde{u}}(\eta ,m)|d\eta =&\int _0^{u'(m)}\eta ^{-n_2-1}|u(m)-m\eta |d\eta \\&\quad +\int _{u'(m)}^{u'(\kappa m)}\eta ^{-n_2-1}|u(I(\eta ))-\eta I(\eta )|d\eta \\&\quad +\int _{u'(\kappa m)}^y\eta ^{-n_2-1}|u(\kappa m)-\kappa m\eta |d\eta . \end{aligned} \end{aligned}$$
(57)

Since \(u(I(y))-yI(y)\) is a continuous function in \(y\in [u'(m),u'(\kappa m)]\), there exits a constant \(C_m>0\) such that

$$\begin{aligned} |u(I(y))-yI(y)|\le C_m \;\;\text{ for }\;\;y\in [u'(m),u'(\kappa m)]. \end{aligned}$$
(58)

Moreover,

$$\begin{aligned} \begin{aligned} \int _0^{u'(m)}\eta ^{-n_2-1}|u(m)-\eta m|d\eta&\le \int _0^{u'(m)}\eta ^{-n_2-1}(|u(m)|+\eta m)d\eta \\&=\dfrac{(u'(m))^{-n_2}}{-n_2}|u(m)|+\dfrac{(u'(m))^{1-n_2}}{1-n_2}m <\infty . \end{aligned} \end{aligned}$$
(59)

By (57), (58), and (59), we deduce that for any fixed \(m>0\)

$$\begin{aligned} \int _0^y \eta ^{-n_2-1}|{\tilde{u}}(\eta ,m)|d\eta < \infty ,\;\;\text{ for } \text{ all }\;\;y>0. \end{aligned}$$

Similarly, we can obtain that for any fixed \(m>0\)

$$\begin{aligned} \int _y^\infty \eta ^{-n_1-1}|{\tilde{u}}(\eta ,m)|d\eta < \infty ,\;\;\text{ for } \text{ all }\;\;y>0, \end{aligned}$$

and thus we conclude that

$$\begin{aligned} \int _0^y \eta ^{-n_2-1}|{\tilde{u}}(\eta ,m)|d\eta +\int _y^\infty \eta ^{-n_1-1}|{\tilde{u}}(\eta ,m)|d\eta <\infty . \end{aligned}$$

It follows from Proposition 1 that

$$\begin{aligned} J_0(y,m) = J_0^p(y,m). \end{aligned}$$

This completes the proof.

Proof of Lemma 3

Since \(\partial _m{\tilde{u}}(y,m)=(u'(m)-y)\mathbf{1}_{\{y\le u'(m)\}}+\kappa (u'(\kappa m)-y)\mathbf{1}_{\{u'(\kappa m) \le y\}}\), it is easy to confirm that for any fixed \(\xi >0\)

$$\begin{aligned} \int _0^y \eta ^{-n_2-1}|\partial _m{\tilde{u}}(\eta ,\xi )|d\eta +\int _y^\infty \eta ^{-n_1-1}|\partial _m{\tilde{u}}(\eta ,\xi )|d\eta <\infty . \end{aligned}$$

It follows from Proposition 1 that

$$\begin{aligned} {\mathcal {Q}}(y,\xi ) = \dfrac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2}\int _0^y \eta ^{-n_2-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta +y^{n_1}\int _y^\infty \eta ^{-n_1-1}\partial _m {\tilde{u}}(\eta ,\xi )d\eta \right] , \end{aligned}$$

and for any fixed \(\xi >0\)

$$\begin{aligned} \liminf _{t\rightarrow \infty }e^{-\delta t}{\mathbb {E}}\left[ |{\mathcal {Q}}(y_t,\xi )|\right] =0. \end{aligned}$$
(60)

Moreover, \({\mathcal {Q}}(y,\xi )\) satisfies the following ODE:

$$\begin{aligned} \begin{aligned} {\mathcal {L}}{\mathcal {Q}}(y,\xi ) + \partial _m{\tilde{u}}(y,\xi )=0. \end{aligned} \end{aligned}$$
(61)

According to Proposition 2, we should find the solution \(H(y,\xi )\) to the variational inequality (29) satisfying the following condition:

  1. 1.

    For any fixed \(\xi >0\) and some \(p\in [1,\infty ]\), \(H(\cdot ,\xi )\in W^{2,p}_{\text {loc}}(0,\infty )\).

  2. 2.

    For any fixed \(\xi >0\) and some constants \(C(\xi ),\epsilon >0\),

    $$\begin{aligned} |\partial _yH(y,\xi )| \le C(\xi )(y^{\epsilon }+y^{-\epsilon }),\;\;\forall y>0. \end{aligned}$$
  3. 3.

    For any fixed \(\xi >0\), \(\liminf _{t\rightarrow \infty } e^{-\delta t}{\mathbb {E}}\left[ |H(y_t,\xi )|\right] = 0.\)

To analyze the variational inequality (29), we study properties of the following substitution:

$$\begin{aligned} P(y,\xi ) \equiv H(y,\xi )-{\mathcal {Q}}(y,\xi ). \end{aligned}$$

From (61), we transform the variation equality (29) into that of P:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} -{\mathcal {L}}P(y,\xi )\ge -\partial _m{\tilde{u}}(y,\xi ),\;\;&{}\text{ if }\;\;P(y,\xi ) = 0,\\ -{\mathcal {L}}P(y,\xi ) = -\partial _m{\tilde{u}}(y,\xi ),\;\;&{}\text{ if }\;\;P(y,\xi ) > 0.\\ \end{array}\right. } \end{aligned} \end{aligned}$$
(62)

To solve the variational inequality (62), let us consider the following free boundary problem:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {L}}P(y,\xi ) -\partial _m {\tilde{u}}(y,\xi ) =0,\;\;&{}\text{ if }\;\;y>z(\xi ),\\ P(y,\xi )=0,\;\;&{}\text{ if }\;\;y\le z(\xi ),\\ P(z(\xi ),\xi )=\partial _y P(z(\xi ),\xi )=0. \end{array}\right. } \end{aligned} \end{aligned}$$
(63)

A general solution to the equation can be written as the sum of a general solution to the homogeneous equation and a particular solution: for \(y>z(\xi )\)

$$\begin{aligned} \begin{aligned} P(y,\xi ) =&A_1(\xi )y^{n_1} + A_2(\xi )y^{n_2}\\ -&\dfrac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2}\int _0^y \eta ^{-n_2-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta +y^{n_1}\int _y^\infty \eta ^{-n_1-1}\partial _m {\tilde{u}}(\eta ,\xi )d\eta \right] \\ =&A_1(\xi )y^{n_1} + A_2(\xi )y^{n_2}-{\mathcal {Q}}(y,\xi ). \end{aligned} \end{aligned}$$
(64)

Since \(P(y,\xi )\) should satisfy the transeversality condition \(\lim _{t\rightarrow \infty }e^{-\delta t}{\mathbb {E}}\left[ |P(y_t,\xi )|\right] =0\), we can deduce that

$$\begin{aligned} A_1(\xi ) \equiv 0. \end{aligned}$$

Thus, we can rewrite \(P(y,\xi )\) as

$$\begin{aligned} P(y,\xi ) =A(\xi )y^{n_2}-{\mathcal {Q}}(y,\xi ). \end{aligned}$$

The \({C}^1\)-condition at \(y=z(\xi )\) in (63) implies that \(P(z(\xi ),\xi )=\partial _y P(z(\xi ),\xi ) =0,\) and thus

$$\begin{aligned} \begin{aligned} \int _{z(\xi )}^\infty \eta ^{-n_1-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta =0, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} A(\xi )=&\dfrac{2}{\theta ^2(n_1-n_2)}\int _0^{z(\xi )}\eta ^{-n_2-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta . \end{aligned} \end{aligned}$$

Claim 1

For any fixed \(\xi >0\), there exists a unique \(z(\xi )\) such that

$$\begin{aligned} \int _{z(\xi )}^\infty \eta ^{-n_1-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta =0. \end{aligned}$$

Moreover, \(0<z(\xi )<u'(\xi )\) for all \(\xi >0\) and \(z(\xi )\) is a strictly decreasing and continuously differentiable function in \(\xi \).

Proof of Claim 1

If \(z(\xi )\in [u'(\xi ),u'(\kappa \xi ))\) for some \(\xi \), then

$$\begin{aligned} \int _{z(\xi )}^\infty \eta ^{-n_1-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta = \kappa \int _{u'(\kappa \xi )}^\infty \eta ^{-n_1-1}(u'(\kappa \xi )-\eta )d\eta <0. \end{aligned}$$

Similarly, if \(z(\xi )\ge u'(\kappa \xi )\),

$$\begin{aligned} \int _{z(\xi )}^\infty \eta ^{-n_1-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta= & {} \kappa \int _{z(\xi )}^\infty \eta ^{-n_1-1}(u'(\kappa \xi )-\eta )d\eta \\\le & {} \kappa \int _{z(\xi )}^\infty \eta ^{-n_1-1}(z(\xi )-\eta )d\eta <0. \end{aligned}$$

Thus, it suffice to consider the case when

$$\begin{aligned} 0< z(\xi ) < u'(\xi )\;\;\text{ for } \text{ all }\;\;\xi >0. \end{aligned}$$

Now we will show that for any fixed \(\xi >0\), there exists a unique \(z(\xi )\in (0,u'(\xi ))\) such that

$$\begin{aligned} {\mathcal {W}}(z(\xi ),\xi ) =0, \end{aligned}$$

where \({\mathcal {W}}(y,\xi )\) is defined as

$$\begin{aligned} {\mathcal {W}}(y,\xi ) \equiv \int _{y}^{u'(\xi )}\eta ^{-n_1-1}(u'(\xi ) - \eta ) d\eta + \kappa \int _{u'(\kappa \xi )}^{\infty }\eta ^{-n_1 -1}(u'(\kappa \xi ) - \eta ) d\eta . \end{aligned}$$

For \(y\in (0,u'(\xi ))\), it follows from \(u'(\xi )-y>0\) that \({\mathcal {W}}(y,\xi )\) is a strictly decreasing function in \(y\in (0,u'(\xi ))\).

Moreover,

$$\begin{aligned} \begin{aligned} {\mathcal {W}}(u'(\xi ), \xi )&=-\kappa \dfrac{(u'(\kappa \xi ))^{1-n_1}}{n_1(n_1-1)}<0,\\ {\mathcal {W}}(0,\xi )&=\left[ -\frac{\eta ^{-n_1}}{n_1}u'(\xi )+\frac{\eta ^{-(n_1-1)}}{n_1-1}\right] _{\eta =0}^{u'(\xi )} -\kappa \dfrac{(u'(\kappa \xi ))^{1-n_1}}{n_1(n_1-1)}=+\infty . \end{aligned} \end{aligned}$$

The intermediate value theorem implies that for any fixed \(\xi >0\), there exists a unique \(z(\xi )\in (0,u'(\xi ))\) such that

$$\begin{aligned} {\mathcal {W}}(z(\xi ),\xi )=0. \end{aligned}$$

That is,

$$\begin{aligned} \begin{aligned} u'(\xi )\dfrac{z(\xi )^{-n_1}}{n_1}-\dfrac{z(\xi )^{1-n_1}}{n_1-1}+\dfrac{1}{n_1(n_1-1)}\left( (u'(\xi )^{1-n_1}) -\kappa (u'(\kappa \xi ))^{1-n_1}\right) =0. \end{aligned}\nonumber \\ \end{aligned}$$
(65)

By differentiating the both side of the Eq. (65) with respect to \(\xi \), we obtain that

$$\begin{aligned} \begin{aligned} \dfrac{dz}{d\xi }=\dfrac{u''(\xi )\Big ((z(\xi ))^{-n_1}-(u'(\xi ))^{-n_1}\Big )+\kappa ^2u''(\kappa \xi )\cdot (u'(\kappa \xi ))^{-n_1}}{(z(\xi ))^{-n_1-1}(u'(\xi )-z(\xi ))n_1}. \end{aligned} \end{aligned}$$

It follows from \(0<z(\xi )<u'(\xi )\), \(u''(\xi )<0\), and \(u''(\kappa \xi )<0\) that

$$\begin{aligned} \dfrac{dz}{d\xi }<0. \end{aligned}$$

Hence, we conclude that \(z(\xi )\) is a strictly decreasing and continuously differentiable function of \(\xi \).

Since \(0<z(\xi )<u'(\xi )\),

$$\begin{aligned} \begin{aligned} A(\xi )=&\dfrac{2}{\theta ^2(n_1-n_2)}\int _0^{z(\xi )}\eta ^{-n_2-1}(u'(\xi )-\eta )d\eta >0, \end{aligned} \end{aligned}$$
(66)

and thus we obtain

$$\begin{aligned} A(\xi )=\dfrac{2}{\theta ^2(n_1-n_2)}\left[ -u'(\xi )\dfrac{(z(\xi ))^{-n_2}}{n_2} + \dfrac{(z(\xi ))^{1-n_2}}{n_2-1}\right] . \end{aligned}$$

Claim 2

\(P(y,\xi )\) given by

$$\begin{aligned} \begin{aligned} P(y,\xi )= {\left\{ \begin{array}{ll} A(\xi )y^{n_2}-{\mathcal {Q}}(y,\xi ),\;\;&{}\text{ if }\;\;y>z(\xi ),\\ 0,\;\;&{}\text{ if }\;\;y\le z(\xi ), \end{array}\right. } \end{aligned} \end{aligned}$$
(67)

satisfies the variational inequality (62).

Moreover, \(P(y,\xi )\) is strictly increasing in \(y\in (z(\xi ),\infty ),\) i.e.,

$$\begin{aligned} \frac{\partial P}{\partial y}(y,\xi )>0,~~\text{ for }~~y>z(\xi ). \end{aligned}$$

Proof of Claim 2

For the case \(y>z(\xi )\), Eq. (64) implies that \(P(y,\xi )=A(\xi )y^{n_2}-{\mathcal {Q}}(y,\xi )\) satisfies

$$\begin{aligned} {\mathcal {L}}P(y,\xi ) - \partial _m{\widetilde{u}}(y,\xi )=0. \end{aligned}$$

In the other case \(y\le z(\xi )\), \(P(y,\xi )=0\) implies that \(-{\mathcal {L}}P(y,\xi )=0\), and inequality \(z(\xi )<u'(\xi )\) implies that \(\partial _m{\widetilde{u}}(y,\xi )=u'(\xi )-y>0\). Thus, we can deduce that

$$\begin{aligned} -{\mathcal {L}}P(y,\xi )\ge -\partial _m{\widetilde{u}}(y,\xi ). \end{aligned}$$

So far, we have shown the following results:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {L}}P(y,\xi ) -\partial _m {\tilde{u}}(y,\xi ) =0,\;\;&{}\text{ if }\;\;y>z(\xi ),\\ {\mathcal {L}}P(y,\xi ) -\partial _m {\tilde{u}}(y,\xi ) \le 0,\;\;&{}\text{ if }\;\;y\le z(\xi ). \end{array}\right. } \end{aligned} \end{aligned}$$

Then, we need to show the following equivalence:

$$\begin{aligned} \begin{aligned}&\{(y,\xi )~|~P(y,\xi )>0\big \}=\big \{(y,\xi )~|~y>z(\xi )\big \},\\&\{(y,\xi )~|~P(y,\xi )=0\big \}=\big \{(y,\xi )~|~y\le z(\xi )\}. \end{aligned} \end{aligned}$$

For \(y>z(\xi )\), \(P(y,\xi )\) can be represented by

$$\begin{aligned} \begin{aligned} P(y,\xi )=&A(\xi )y^{n_2}-{\mathcal {Q}}(y,\xi )\\ =&\frac{2}{\theta ^2(n_1-n_2)}\left[ -y^{n_2}\int _{z(\xi )}^y \eta ^{-n_2-1}\partial _m{\widetilde{u}}(\eta ,\xi )d\eta -y^{n_1}\int _{y}^\infty \eta ^{-n_1-1}\partial _m{\widetilde{u}}(\eta ,\xi )d\eta \right] \\ =&\frac{2}{\theta ^2(n_1-n_2)}\left[ -y^{n_2}\int _{0}^y \eta ^{-n_2-1}\partial _m{\widetilde{u}}(\eta ,\xi )\cdot \mathbf{1}_{\{\eta>z(\xi )\}}d\eta \right. \\&\left. -y^{n_1}\int _{y}^\infty \eta ^{-n_1-1}\partial _m{\widetilde{u}}(\eta ,\xi )\cdot \mathbf{1}_{\{\eta >z(\xi )\}}d\eta \right] . \end{aligned} \end{aligned}$$

Let us temporarily denote

$$\begin{aligned} \begin{aligned} g(\eta ,\xi )&\equiv \partial _m{\widetilde{u}}(\eta ,\xi )\cdot \mathbf{1}_{\{\eta >z(\xi )\}}\\&=\big (u'(\xi )-\eta \big )\mathbf{1}_{\{z(\xi )<\eta \le u'(\xi )\}}+\kappa \big (u'(\kappa \xi )-\eta \big )\mathbf{1}_{\eta \ge u'(\kappa \xi )\}}. \end{aligned} \end{aligned}$$
(68)

Since

$$\begin{aligned} y^{n_2}\dfrac{d}{dy}\left( \int _0^y\eta ^{-n_2-1}g(\eta ,\xi )d\eta \right) +y^{n_1}\dfrac{d}{dy}\left( \int _{y}^\infty \eta ^{-n_1-1}g(\eta ,\xi )d\eta \right) =0, \end{aligned}$$

we deduce that

$$\begin{aligned}&\frac{\partial P}{\partial y} =\frac{2}{\theta ^2(n_1-n_2)}\nonumber \\&\quad \left[ -n_2y^{n_2-1}\int _{0}^y \eta ^{-n_2-1}g(\eta ,\xi )d\eta -n_1y^{n_1}\int _{y}^\infty \eta ^{-n_1-1}g(\eta ,\xi )d\eta \right] . \end{aligned}$$
(69)

It follows from the integration by parts that

$$\begin{aligned} \begin{aligned} \int _{0}^y \eta ^{-n_2-1}g(\eta ,\xi )d\eta =&-\left. \frac{\eta ^{-n_2}}{n_2}g(\eta ,\xi )\right| _0^y+\int _0^y \frac{\eta ^{-n_2}}{n_2} \frac{\partial g}{\partial \eta }(\eta ,\xi )d\eta \\ =&-\frac{1}{n_2}\left( y^{-n_2}g(y,\xi )-\int _0^y \eta ^{-n_2}\frac{\partial g}{\partial \eta }(\eta ,\xi )d\eta \right) , \end{aligned} \end{aligned}$$
(70)

where \(\frac{\partial g}{\partial \eta }(\eta ,\xi )\) is given by

$$\begin{aligned} \frac{\partial g}{\partial \eta }(\eta ,\xi )= -\mathbf{1}_{\{z(\xi )<\eta \le u'(\xi )\}}-\kappa \cdot \mathbf{1}_{\{\eta \ge u'(\kappa \xi )\}}. \end{aligned}$$
(71)

Similarly, we can deduce

$$\begin{aligned} \begin{aligned} \int _{y}^\infty \eta ^{-n_1-1}g(\eta ,\xi )d\eta =&\frac{1}{n_1}\left( y^{-n_1}g(y,\xi )+\int _y^\infty \eta ^{-n_1}\frac{\partial g}{\partial \eta }(\eta ,\xi )d\eta \right) . \end{aligned} \end{aligned}$$
(72)

From Eqs. (70) and (72), we rewrite the Eq. (69) as

$$\begin{aligned} \frac{\partial P}{\partial y}=-\frac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2-1}\int _0^y \eta ^{-n_2}\frac{\partial g}{\partial \eta }(\eta ,\xi )d\eta +y^{n_1-1}\int _y^\infty \eta ^{-n_1}\frac{\partial g}{\partial \eta }(\eta ,\xi )d\eta \right] . \end{aligned}$$

Hence, we deduce that

$$\begin{aligned} \frac{\partial P}{\partial y}= {\left\{ \begin{array}{ll} \frac{2}{\theta ^2(n_1-n_2)}\left\{ \frac{1}{1-n_2}+y^{n_1-1}\left( \int _y^{u'(\xi )} \eta ^{-n_1}d\eta +\int _{u'(\kappa \xi )}^{\infty } \kappa \cdot \eta ^{-n_1} d\eta \right) \right\} ,~~&{}\text{ if }~z(\xi )<y<u'(\xi ),\\ \frac{2}{\theta ^2(n_1-n_2)}\left\{ \frac{1}{1-n_2}\left( \frac{y}{u'(\xi )}\right) ^{n_2-1}-\frac{\kappa }{1-n_1}\left( \frac{y}{u'(\kappa \xi )}\right) ^{n_1-1}\right\} ,~~&{}\text{ if }~u'(\xi )\le y < u'(\kappa \xi ),\\ \frac{2}{\theta ^2(n_1-n_2)}\left\{ y^{n_2-1}\left( \int _0^{u'(\xi )} \eta ^{-n_2}d\eta +\int _{u'(\xi )}^y \eta ^{-n_2}d\eta \right) -\frac{\kappa }{1-n_1}\right\} ,~~&{}\text{ if }~y\ge u'(\kappa \xi ). \end{array}\right. } \end{aligned}$$

and thus we conclude that \(\frac{\partial P}{\partial y}>0\) for \(y>z(\xi )\). It follows from \(P(z(\xi ), \xi )=0\) that

$$\begin{aligned} P(y,\xi )>0~~\text{ for }~~y>z(\xi ). \end{aligned}$$

In terms of \(z(\xi )\), the following relationship holds:

$$\begin{aligned} \begin{aligned}&\{(y,\xi )~|~P(y,\xi )>0\big \}=\big \{(y,\xi )~|~y>z(\xi )\big \},\\&\{(y,\xi )~|~P(y,\xi )=0\big \}=\big \{(y,\xi )~|~y\le z(\xi )\}. \end{aligned} \end{aligned}$$

By claims 1 and 2 , It follows from \(H(y,\xi )=P(y,\xi )+{\mathcal {Q}}(y,\xi )\) that

$$\begin{aligned} H(y,\xi ) =\left\{ \begin{aligned}&A(\xi ) y^{n_2}, \;&\text{ if }\;\;y >z(\xi ),\\&\dfrac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2}\int _0^y \eta ^{-n_2-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta +y^{n_1}\int _y^\infty \eta ^{-n_1-1}\partial _m {\tilde{u}}(\eta ,\xi )d\eta \right] ,&\text{ if }\;\;y\le z(\xi ), \end{aligned} \right. \end{aligned}$$
(73)

satisfies the variational inequality (29).

Claim 3

The \(H(y,\xi )\) given in (73) satisfies the following conditions 1,2 and 3.

  1. 1.

    For any fixed \(\xi >0\) and some \(p\in [1,\infty ]\), \(H(\cdot ,\xi )\in W^{2,p}_{\text {loc}}(0,\infty )\).

  2. 2.

    For any fixed \(\xi >0\) and some constants \(C(\xi ),\epsilon >0\),

    $$\begin{aligned} |\partial _yH(y,\xi )| \le C(\xi )(y^{\epsilon }+y^{-\epsilon }),\;\;\forall y>0. \end{aligned}$$
  3. 3.

    For any fixed \(\xi >0\), \(\liminf _{t\rightarrow \infty } e^{-\delta t}{\mathbb {E}}\left[ |H(y_t,\xi )|\right] = 0.\)

Thus, \(H(t,\xi )\) in (73) is a solution of Problem 4.

Proof of Claim 3

We will show the \(H(y,\xi )\) in (73) satisfies each conditions 1,2, and 3.

(Condition 1): From the definition of free boundary (63) and the fact that \(\partial _m {\widetilde{u}}(\cdot ,\xi )\) is differentiable almost everywhere, we can deduce that the first derivative \(\frac{\partial H}{\partial y}(y,\xi )\) of the representation (73) is differentiable almost everywhere. Morever, since \(\partial _m {\widetilde{u}}(\cdot ,\xi )\) is monotonically decreasing, we can easily deduce that the \(H(y,\xi )\) in (73) is in \(W^{2,\infty }_{\text {loc}}(0,\infty )\), i.e., \(H(\cdot ,\xi )\in W^{2,\infty }_{\text {loc}}(0,\infty )\).

(Condition 2): Consider \(\partial _y H\) derived by

$$\begin{aligned} \begin{aligned} \frac{\partial H}{\partial y}(y,\xi ) = {\left\{ \begin{array}{ll} n_2 A(\xi )y^{n_2-1}, &{}\text{ for }\;\;y >z(\xi ),\\ \displaystyle \dfrac{2}{\theta ^2(n_1-n_2)}\left[ n_2y^{n_2-1}\int _0^y \eta ^{-n_2-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta +n_1y^{n_1}\int _y^\infty \eta ^{-n_1-1}\partial _m {\tilde{u}}(\eta ,\xi )d\eta \right] , &{}\text{ for }\;\;y\le z(\xi ). \end{array}\right. } \end{aligned} \end{aligned}$$

For \(y>z(\xi )\), we can easily find a coefficient \(C_1(\xi )>0\) satisfying

$$\begin{aligned} \left| \frac{\partial H}{\partial y}(y,\xi )\right| =\left| n_2 A(\xi ) y^{n_2-1}\right| \le C_1(\xi )(y^{n_2-1}+y^{-(n_2-1)}). \end{aligned}$$
(74)

In the case of \(y\le z(\xi )\), we obtain the following inequalities:

$$\begin{aligned} \begin{aligned} \left| n_2y^{n_2-1}\int _0^y \eta ^{-n_2-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta \right|&\le \left| n_2y^{n_2-1}\right| \int _0^y \eta ^{-n_2-1}|\partial _m{\widetilde{u}}(\eta ,\xi )|d\eta \\&\le \left| n_2y^{n_2-1}\right| \int _0^y \eta ^{-n_2-1}(\eta +u'(\xi ))d\eta \\&\le C_2(\xi )(y^{-1}+y) \end{aligned} \end{aligned}$$
(75)

where \(C_2(\xi )>0\) and we have used the fact that \(|\partial _m{\widetilde{u}}(\eta ,\xi )|\le (\eta +u'(\xi ))\).

Since, we can easily obtain

$$\begin{aligned} \begin{aligned} \left| n_1y^{n_1-1}\int _y^\infty \eta ^{-n_1-1}\partial _m{\tilde{u}}(\eta ,\xi )d\eta \right|&\le C_3(\xi )(y^{-1}+y). \end{aligned} \end{aligned}$$
(76)

It follows from (75) and (76) that for \(y\le z(\xi )\)

$$\begin{aligned} \left| \frac{\partial H}{\partial y}(y,\xi )\right| \le D(\xi )\cdot (y^{-1}+y), \end{aligned}$$
(77)

where \(D(\xi )\) is a constant only depending on \(\xi \).

From (74) and (77), we can conclude that \(H(y,\xi )\) in (73) satisfies the condition 2.

(Condition 3): Since

$$\begin{aligned} (y_t)^{n_2}<z(\xi )^{n_2}\;\;\text{ for }\;\; y_t>z(\xi ),\;\;H(y_t,\xi )={\mathcal {Q}}(y_t,\xi )\;\;\text{ for }\;\; y_t \le z(\xi ), \end{aligned}$$

and

$$\begin{aligned} |H(y_t,\xi )|\le A(\xi )(y_t)^{n_2 }+ |{\mathcal {Q}}(y_t,\xi )|, \end{aligned}$$

it follows from \(A(\xi )>0\) and (60) that

$$\begin{aligned} \begin{aligned} \liminf _{t\rightarrow \infty } e^{-\delta t}{\mathbb {E}}\left[ |H(y_t,\xi )|\right]&\le \liminf _{t\rightarrow \infty }\left( e^{-\delta t}A(\xi )(z(\xi ))^{n_2}+e^{-\delta t}{\mathbb {E}}\left[ |{\mathcal {Q}}(y_t,\xi )|\right] \right) =0. \end{aligned} \end{aligned}$$

By Proposition 2, we conclude that the \(H(y,\xi )\) in (73) is a solution to the optimal stopping problem (27). Moreover, the optimal stopping time \(\tau _\xi \) to the problem (27) is given by

$$\begin{aligned} \tau _\xi =\inf \{t\ge 0 \mid H(y_t,\xi )={\mathcal {Q}}(y_t,\xi )\}= \inf \{t\ge 0 \mid y_t \le z(\xi )\}. \end{aligned}$$

Since \(z(\xi )\) is a strictly decreasing and continuous function in \(\xi \), we deduce that \(\tau _\xi \) is a increasing and continuous function in \(\xi \).

By Claims 1,2 and 3, we have proved the desired results.

Proof of Lemma 4

Since we have shown that \(z(\cdot )\) is strictly decreasing and continuously differentiable in \({\mathbb {R}}^+\), we can easily deduce the injectivity of the free boundary \(z(\cdot )\) in \({\mathbb {R}}^+\).

Since \(z(\xi )<u'(\xi )\) for all \(\xi >0\), we obtain that

$$\begin{aligned} 0\le \lim _{\xi \rightarrow \infty }z(\xi ) \le \lim _{\xi \rightarrow \infty }u'(\xi )=0 \end{aligned}$$

and thus

$$\begin{aligned} \lim _{\xi \rightarrow \infty }z(\xi )=0. \end{aligned}$$

This completes the proof.

Proof of Proposition 3

Proof of (a). It follow from Lemma 3, the free boundary \(z(\xi )\) is strictly decreasing and continuously differentiable function of \(\xi \) and the optimal stopping \(\tau _\xi \) for each \(\xi >0\) is given

$$\begin{aligned} \tau _\xi = \inf \{t\ge 0 \mid y_t \le z(\xi )\} \end{aligned}$$
(78)

Thus, we deduce that for \(\xi \ge M_{0-}\),

$$\begin{aligned} \left\{ \tau _\xi \le t \right\} =\left\{ \inf _{0\le s \le t} y_s \le z(\xi )\right\} =\left\{ I_z\left( \inf _{0\le s \le t} y_s\right) \ge \xi \right\} =\left\{ \sup _{0\le s \le t} I_z(y_s)\ge \xi \right\} . \end{aligned}$$

By the correspondence \(\left\{ \tau _\xi \le t\right\} =\left\{ M_t\ge \xi \right\} \) in Lemma 1, we obtain that for given \(y>0\) the optimal maximum process \(M_t^*(y)\) is

$$\begin{aligned} {M_t^*(y)\equiv I_z\left( \min \left\{ z(M_{0-}), \inf _{0\le s \le t} y_s \right\} \right) ,~~~~\forall ~t\ge 0}. \end{aligned}$$

Proof of (b). Since

$$\begin{aligned} H(y,\xi ) =\left\{ \begin{aligned}&A(\xi ) y^{n_2}, \;&\text{ if }\;\;y >z(\xi ),\\&{\mathcal {Q}}(y,\xi ),&\text{ if }\;\;y\le z(\xi ). \end{aligned} \right. \end{aligned}$$
(79)

It follows from the closed forms \(J_0(y,m)\) in Lemma 2 and \({\mathcal {Q}}(y,\xi )\) in Lemma 3 that

$$\begin{aligned} {\mathcal {Q}}(y,m) = \partial _m J_0 (y,m). \end{aligned}$$
(80)

From the closed form of \(H(y,\xi )\) in (73), \(J(y,M_{0-})\) is given by

$$\begin{aligned} J(y,M_{0-})&=\int _{M_{0-}}^{\infty } H(y,\xi ) d\xi +J_0(y,M_{0-})\nonumber \\&= {\left\{ \begin{array}{ll} \displaystyle \int _{M_{0-}}^\infty A(\xi )y^{n_2}d\xi + J_0(y,M_{0-}),\;\;&{}\text{ for }\;\;M_{0-} > I_z(y),\\ \displaystyle \int _{I_z(y)}^\infty A(\xi )y^{n_2}d\xi +\int _{M_{0-}}^{I_z(y)} {\mathcal {Q}}(y,\xi )d\xi + J_0(y,M_{0-}),\;\;&{}\text{ for }\;\;M_{0-} \le I_z(y). \\ \end{array}\right. } \end{aligned}$$
(81)

In the case of \(M_{0-} \le I_z(y)\), the relationship (80) implies that

$$\begin{aligned} \begin{aligned} \int _{M_{0-}}^{I_z(y)} {\mathcal {Q}}(y,\xi )d\xi + J_0(y,M_{0-}) = J_0 (y, I_z(y)). \end{aligned} \end{aligned}$$
(82)

By (81), (82), and the decomposition in (22), we obtain the semi-closed form solution.

Proof of (c).

  1. (i)

    \(J(y,M_{0-})\) is a \(C^{1,2}\)-function. Note that

    $$\begin{aligned} \frac{\partial J}{\partial m}(y,M_{0-})=&-H(y,M_{0-})+{\partial _m J_0}(y,M_{0-})\\ =&\left\{ \begin{aligned}&-A(M_{0-})y^{n_2}+{\mathcal {Q}}(y,M_{0-})\le 0,~~&\text{ if }~~M_{0-} > I_z(y),\\&-{\mathcal {Q}}(y,M_{0-})+{\mathcal {Q}}(y,M_{0-})=0,~~&\text{ if }~~M_{0-} \le I_z(y). \end{aligned} \right. \end{aligned}$$

    We easily deduce that \(A(M_{0-})y^{n_2}\) and \({\mathcal {Q}}(y,M_{0-})\) are \(C^{1,1}\) functions for \(M_{0-}>I_z(y)\). Since

    $$\begin{aligned} -A(I_z(y))y^{n_2}+{\mathcal {Q}}(y,I_z(y))=0, \end{aligned}$$

    we obtain that \(\partial _m J\) is a \(C^{1,1}\) function. This implies that \(J(y,M_{0-})\) is a \(C^{1,2}\)-function.

  2. (ii)

    \(\frac{\partial ^2 J}{\partial y^2}\) is continuous. In the case of \(M_{0-} > I_z(y)\), we easily obtain that

    $$\begin{aligned} \begin{aligned} \frac{\partial ^2 J}{\partial y^2}(y,M_{0-})&=\frac{\partial ^2 J_0}{\partial y^2}(y,M_{0-})+n_2(n_2-1) y^{n_2-2}\int _{M_{0-}}^\infty A(\xi ) d\xi . \end{aligned} \end{aligned}$$
    (83)

    Also, in the case of \(M_{0-} \le I_z(y) \), we deduce that

    $$\begin{aligned} \frac{\partial J_0}{\partial m}(y,I_z(y))&=\frac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2}\int _0^y \eta ^{-n_2-1}\partial _m {\widetilde{u}}(\eta ,I_z(y))d\eta +y^{n_1}\int _y^\infty \eta ^{-n_1-1}\partial _m {\widetilde{u}}(\eta ,I_z(y))d\eta \right] \nonumber \\&=H(y,I_z(y)), \end{aligned}$$
    (84)

    and

    $$\begin{aligned} \begin{aligned} \frac{\partial J_1}{\partial m}(y,I_z(y))&=-y^{n_2} A(I_z(y))=-H(y,I_z(y)), \end{aligned} \end{aligned}$$
    (85)

    where we have used the fact that \(I_z(\cdot )\) is the inverse function of the free boundary \(z(\cdot )\). From Eqs. (84) and (85), we have

    $$\begin{aligned} \begin{aligned} \frac{\partial J}{\partial y}(y,M_{0-})=&\frac{\partial J_0}{\partial y}(y,I_z(y))+\frac{\partial J_0}{\partial m}(y,I_z(y))\cdot I_z'(y) \\&\quad +n_2y^{n_2-1} \int _{I_z(y)}^{\infty }A(\xi )d\xi -y^{n_2} A(I_z(y))\cdot I_z'(y)\\ =&\frac{\partial J_0}{\partial y}(y,I_z(y))+n_2y^{n_2-1} \int _{I_z(y)}^{\infty }A(\xi )d\xi . \end{aligned} \end{aligned}$$

    Similarly, we can deduce

    $$\begin{aligned} \begin{aligned} \frac{\partial ^2 J_0}{\partial y\partial m}(y,I_z(y))=&\frac{2}{\theta ^2(n_1-n_2)}\left[ n_2y^{n_2-1}\int _0^y \eta ^{-n_2-1}\partial _m {\widetilde{u}}(\eta ,I_z(y))d\eta \right. \\ +&\left. n_1y^{n_1-1}\int _y^\infty \eta ^{-n_1-1}\partial _m {\widetilde{u}}(\eta ,I_z(y))d\eta \right] \\ =&\frac{\partial H}{\partial y}(y,I_z(y)), \end{aligned} \end{aligned}$$
    (86)

    and

    $$\begin{aligned} \begin{aligned} \frac{\partial H}{\partial y}(y,I_z(y))=n_2y^{n_2-1} A(I_z(y)). \end{aligned} \end{aligned}$$
    (87)

    It follows from the Eqs. (86) and (87) that for \(M_{0-} \le I_z(y) \),

    $$\begin{aligned} \begin{aligned} \frac{\partial ^2 J}{\partial y^2}(y,M_{0-})=&\frac{\partial ^2 J_0}{\partial y^2}(y,I_z(y))+\frac{\partial ^2 J_0}{\partial y \partial m}(y,I_z(y))\cdot I_z'(y)\\ +&n_2(n_2-1)y^{n_2-2}\int _{I_z(y)}^\infty A(\xi )d\xi -n_2y^{n_2-1} A(I_z(y)) \cdot I'_z(y)\\ =&\frac{\partial ^2 J_0}{\partial y^2}(y,I_z(y))+n_2(n_2-1)y^{n_2-2}\int _{I_z(y)}^\infty A(\xi )d\xi . \end{aligned} \end{aligned}$$
    (88)

    From Eqs. (83) and (88), we easily confirm that \(\frac{\partial ^2 J}{\partial y^2}\) is continuous, i.e.,

    $$\begin{aligned} \frac{\partial ^2 J}{\partial y^2}(y,M_{0-})=\left\{ \begin{aligned}&\frac{\partial ^2 J_0}{\partial y^2}(y,M_{0-})+n_2(n_2-1) y^{n_2-2}\int _{M_{0-}}^\infty A(\xi ) d\xi ,~~~~\text{ if }~M_{0-} > I_z(y),\\&\frac{\partial ^2 J_0}{\partial y^2}(y,I_z(y))+n_2(n_2-1)y^{n_2-2}\int _{I_z(y)}^\infty A(\xi )d\xi ,~~~~\text{ if }~M_{0-}\le I_z(y). \end{aligned} \right. \end{aligned}$$
    (89)

By (i) and (ii), we conclude tat \(J(y,M_{0-})\) is a \(C^2\)-function.

Proof of Theorem 1

We will prove the duality relationship in (40) in the following steps.

(Step 1) The dual value function \(J(y,M_{0-})\) is strictly convex in \(y>0\).

Proof of Step 1. Since \({\widetilde{u}}(y,M_{0-})\) is convex in \(y>0\) and

$$\begin{aligned} J_0(y,M_{0-}) = {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}{\widetilde{u}}(y_t,M_{0-})dt\right] , \end{aligned}$$

we deduce that \(J_0(y,M_{0-})\) is convex in \(y>0\). It follows from (66) and (89) that \(A(\xi )\) is positive for all \(\xi >0\) and thus we conclude that \(J(y,M_{0-})\) is strictly convex in \(y>0\), i.e.,

$$\begin{aligned} \partial _{yy}J(y,M_{0-})>0. \end{aligned}$$

(Step 2) For given \(M_{0-}>0\) and \(w>\kappa M_{0-}/r\), there exists unique \(y^*\) such that

$$\begin{aligned} w=-\frac{\partial J}{\partial y}(y^*,M_{0-}). \end{aligned}$$

Proof of Step 2. Since \(J(y,M_{0-})\) is strictly convex in \(y>0\), \(-\frac{\partial J}{\partial y}(y,M_{0-})\) is strictly decreasing in y.

Note that

$$\begin{aligned} -\frac{\partial J}{\partial y}(y,M_{0-})=\left\{ \begin{aligned}&-\frac{\partial J_0}{\partial y}(y,M_{0-})-n_2y^{n_2-1}\int _{M_{0-}}^\infty A(\xi )d\xi ,~~~&\text{ if }~~(y,M_{0-})\in \mathbf{NR},\\&-\frac{\partial J_0}{\partial y}(y,I_z(y))-n_2y^{n_2-1}\int _{I_z(y)}^\infty A(\xi )d\xi ,~~~&\text{ if }~~(y,M_{0-})\in \mathbf{IR}. \end{aligned} \right. \end{aligned}$$

For a sufficiently large y such that \(y\ge u'(\kappa M_{0-})\), we deduce that

$$\begin{aligned} -\frac{\partial J}{\partial y}(y,M_{0-})=&\frac{2}{\theta ^2(n_1-n_2)}\left[ -y^{n_2-1}\int _0^{u'(\kappa M_{0-})}\eta ^{-n_2}\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,M_{0-})d\eta \right. \nonumber \\ +&\left. y^{n_2-1}\int _{u'(\kappa M_{0-})}^y\eta ^{-n_2}\cdot \kappa M_{0-}d\eta +y^{n_1-1}\int _{y}^\infty \eta ^{-n_1}\cdot \kappa M_{0-}d\eta \right] -n_2y^{n_2-1}\int _{M_{0-}}^\infty A(\xi )d\xi \nonumber \\ =&-y^{n_2-1}\left[ \frac{2}{\theta ^2(n_1-n_2)}\left( \int _0^{u'(\kappa M_{0-})}\eta ^{-n_2}\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,M_{0-})d\eta +\frac{(u'(\kappa M_{0-}))^{1-n_2}}{1-n_2}\right) \right] \nonumber \\ -&n_2y^{n_2-1}\int _{M_{0-}}^\infty A(\xi )d\xi +\frac{\kappa M_{0-}}{r}, \end{aligned}$$
(90)

where we have used that \(\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,M_{0-})=-\kappa M_{0-}\) for \(y\gg u'(\kappa M_{0-})\).

Thus, we obtain

$$\begin{aligned} \lim _{y\rightarrow +\infty }\left[ -\frac{\partial J}{\partial y}(y,M_{0-})\right] =\frac{\kappa M_{0-}}{r} \end{aligned}$$

For a sufficiently small y such that \(y<z(M_{0-})\),

$$\begin{aligned} \begin{aligned} -\frac{\partial J}{\partial y}(y,M_{0-})=&\frac{2}{\theta ^2(n_1-n_2)}\left[ y^{n_2-1}\int _0^{y}\eta ^{-n_2}\cdot I_z(y)d\eta +y^{n_1-1}\int _{y}^{u'(I_z(y))}\eta ^{-n_2}\cdot I_z(y)d\eta \right. \\&\left. -y^{n_1-1}\int _{u'(I_z(y))}^\infty \eta ^{-n_1}\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,I_z(y))d\eta \right] \\&\quad -n_2y^{n_2-1}\int _{I_z(y)}^\infty A(\xi )d\xi \\ =&\frac{2}{\theta ^2(n_1-n_2)}\left[ \left( -\frac{1}{n_2-1}+\frac{1}{n_1-1}-\frac{1}{n_1-1}\left( \frac{y}{u'(I_z(y))}\right) ^{n_1-1}\right) \cdot I_z(y)\right. \\&\left. -y^{n_1-1}\int _{u'(I_z(y))}^\infty \eta ^{-n_1}\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,I_z(y))d\eta \right] -n_2y^{n_2-1}\int _{I_z(y)}^\infty A(\xi )d\xi . \end{aligned} \end{aligned}$$
(91)

Since \(z(\xi )<u'(\xi )\) for \(\xi >0\), we can deduce that \(y<u'(I_z(y))\). This leads to

$$\begin{aligned} \left( \dfrac{y}{u'(I_z(y))}\right) ^{n_1-1}<1. \end{aligned}$$

Moreover, we know that \(\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,I_z(y))<0\) for \(\eta >0\), and that \(A(\xi )>0\) for \(\xi >0\).

To sum up, we can deduce that

$$\begin{aligned} -\frac{\partial J}{\partial y}(y,M_{0-})>-\frac{2}{\theta ^2(n_1-n_2)}\cdot \frac{I_z(y)}{(n_2-1)}. \end{aligned}$$

From Lemma 4, we know that \(\lim _{y\rightarrow 0^+}I_z(y)=+\infty \), and this implies that

$$\begin{aligned} \lim _{y\rightarrow 0^+}\left[ -\frac{\partial J}{\partial y}(y,M_{0-})\right] =+\infty . \end{aligned}$$

Thus, we obtain that for given \(M_{0-}>0\) and \(w>\kappa M_{0-}/r\), there exists unique \(y^*\) such that

$$\begin{aligned} w=-\frac{\partial J}{\partial y}(y^*,M_{0-}). \end{aligned}$$

(Step 3) The candidate of the optimal consumption process \((c^*(y_t^*))_{t=0}^\infty \) given by

$$\begin{aligned} c^*(y_t^*)\equiv {\left\{ \begin{array}{ll} M^*(y_t^*),~~~&{}\text{ if }~~~y_t^* \le u'(M^*(y_t^*)),\\ I(y_t^*),~~~&{}\text{ if }~~~u'(M^*(y_t^*))<y_t^* < u'(\kappa M^*(y_t^*)),\\ \kappa M^*(y_t^*),~~~&{}\text{ if }~~~y_t^* \ge u'(\kappa M^*(y_t^*)) \end{array}\right. } \;\;\text{ with }\;\; y_t^*=y^* e^{\delta t}H_t \end{aligned}$$

satisfies the static budget constraint (13) with equality.

Proof of Step 3. Let us denote h(ym) by

$$\begin{aligned} h(y,m)\equiv&-y\dfrac{\partial {\tilde{u}}}{\partial y}(y,m) \end{aligned}$$
(92)
$$\begin{aligned} =&y\left( m\cdot \mathbf{1}_{\{\eta \le u'(m)\}}+ I(y)\cdot \mathbf{1}_{\{u'(m)< y < u'(\kappa m)\}}+ \kappa m\cdot \mathbf{1}_{\{y\ge u'(m)\}}\right) \end{aligned}$$
(93)

Note that

$$\begin{aligned} h(y^*_t,M_t^*)=y_t^* c^*(y_t^*)\quad \text{ and }\quad \frac{\partial h}{\partial m}(y^*_t, M_t^*)=y_t^* \mathbf{1}_{\{y_t^* < u' (M_t^*)\}}+\kappa y_t^* \mathbf{1}_{\{y_t^* > u' (\kappa M_t^*)\}} \end{aligned}$$

with \(M^*_t=M^*_t(y^*)\).

Then, we have

$$\begin{aligned}&y^* {\mathbb {E}}\left[ \int _0^\infty H_t c^*(y_t^*) dt\right] \nonumber \\&\quad = {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} h(y^*_t,M_t^*) dt\right] \nonumber \\&\quad = {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}h(y_t^*, M_{0-})dt\right] + {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} \left( \int _{M_{0-}}^{M_t^*}\frac{\partial h}{\partial \xi }(y_t^*,\xi )d\xi \right) dt\right] ,\nonumber \\ \end{aligned}$$
(94)

As similar to the proof of Lemma 2, it is not difficult to show that

$$\begin{aligned} \int _0^y \eta ^{-n_2-1}|h(\eta ,m)|d\eta +\int _y^\infty \eta ^{-n_1-1}|h(\eta ,m)|d\eta <\infty . \end{aligned}$$

It follows from Proposition 1 and the integration by parts formula that we obtain

$$\begin{aligned}&{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}h(y_t^*, M_{0-})dt\right] \nonumber \\&\quad = -{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}y_t^*\frac{\partial {\widetilde{u}}}{\partial y}(y_t^*,M_{0-})dt\right] \nonumber \\&\quad = -\frac{2}{\theta ^2(n_1-n_2)} \left[ (y^*)^{n_2}\int _0^{y^*} \eta ^{-n_2}\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,M_{0-})d\eta +(y^*)^{n_1}\int _{y^*}^\infty \eta ^{-n_1}\frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,M_{0-})d\eta \right] \nonumber \\&\quad = -\frac{2}{\theta ^2(n_1-n_2)} \left[ n_2(y^*)^{n_2}\int _0^{y^*} \eta ^{-n_2}{\widetilde{u}}(\eta ,M_{0-})d\eta +n_1(y^*)^{n_1}\int _{y^*}^\infty \eta ^{-n_1}{\widetilde{u}}(\eta ,M_{0-})d\eta \right] \nonumber \\&\quad = -y^* \frac{\partial J_0}{\partial y}(y^*,M_{0-}). \end{aligned}$$
(95)

It follows from the one-to-one correspondence between the process \((M_t^*)_{t=0}^\infty \) and the stopping time \((\tau _\xi )_{\xi >M_{0-}}\) developed in Sect. 3.2 that we can transform the second expectation in the last equation of (94) as

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} \left( \int _{M_{0-}}^{M_t^*}\frac{\partial h}{\partial \xi }(y_t^*,\xi )d\xi \right) dt\right]&={\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} \left( \int _{M_{0-}}^{\infty }\frac{\partial h}{\partial \xi }(y_t^*,\xi )\cdot \mathbf{1}_{\{\xi <M_t^*\}}d\xi \right) dt\right] \\&=\int _{M_{0-}}^{\infty }{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} \frac{\partial h}{\partial \xi }(y_t^*,\xi )\cdot \mathbf{1}_{\{t >\tau _\xi \}} dt\right] d\xi \\&=\int _{M_{0-}}^{\infty }{\mathbb {E}}\left[ e^{-\delta \tau _\xi }{\mathbb {E}}_{\tau _\xi }\left[ \int _{\tau _\xi }^\infty e^{-\delta (s-\tau _\xi )} \frac{\partial h}{\partial \xi }(y_s^*,\xi )ds \right] \right] d\xi . \end{aligned} \end{aligned}$$

Let us temporarily denote \({\widetilde{H}}(y^*,\xi )\) by

$$\begin{aligned} \begin{aligned} {\widetilde{H}}(y^*,\xi )&={\mathbb {E}}_{\tau _\xi }\left[ \int _{\tau _\xi }^\infty e^{-\delta (s-\tau _\xi )} \frac{\partial h}{\partial \xi }(y_s^*,\xi )ds \right] \\&={\mathbb {E}}\left[ e^{-\delta \tau _\xi } {\widetilde{Q}}\big (y_{\tau _\xi }^*,\xi \big )\right] , \end{aligned} \end{aligned}$$

where

$$\begin{aligned} {\widetilde{Q}}(y^*_t,\xi )\equiv {\mathbb {E}}_{t}\left[ \int _{t}^\infty e^{-\delta (s-t)} \frac{\partial h}{\partial \xi }(y_s^*,\xi )ds \right] . \end{aligned}$$

For a fixed \(\xi >0\), it is easy to show

$$\begin{aligned} \int _0^y \eta ^{-n_2-1}\left| \frac{\partial h}{\partial \xi }(\eta ,\xi )\right| d\eta +\int _y^\infty \eta ^{-n_1-1}\left| \frac{\partial h}{\partial \xi }(\eta ,\xi )\right| d\eta <\infty . \end{aligned}$$

It follows from Proposition 1 that we deduce that

$$\begin{aligned} {\widetilde{Q}}(y,\xi )= \frac{2}{\theta ^2(n_1-n_2)} \left[ y^{n_2}\int _0^{y} \eta ^{-n_2-1}\frac{\partial h}{\partial \xi }(\eta ,\xi )d\eta +y^{n_1}\int _{y}^\infty \eta ^{-n_1-1}\frac{\partial h}{\partial \xi }(\eta ,\xi )d\eta \right] . \end{aligned}$$

Since

$$\begin{aligned} \frac{\partial h}{\partial \xi } (\eta , \xi )= \frac{\partial }{\partial \xi }\left( -\eta \frac{\partial {\widetilde{u}}}{\partial \eta }(\eta ,\xi )\right) , \end{aligned}$$

it follows from (95) that

$$\begin{aligned} {\widetilde{Q}}(y,\xi )&= \frac{2}{\theta ^2(n_1-n_2)} \left[ y^{n_2}\int _0^{y} \eta ^{-n_2-1}\frac{\partial h}{\partial \xi }(\eta ,\xi )d\eta +y^{n_1}\int _{y}^\infty \eta ^{-n_1-1}\frac{\partial h}{\partial \xi }(\eta ,\xi )d\eta \right] \nonumber \\&=\dfrac{\partial }{\partial \xi }\left( -\frac{2}{\theta ^2(n_1-n_2)} \left[ n_2y^{n_2}\int _0^{y} \eta ^{-n_2-1}{\widetilde{u}}(\eta ,\xi )d\eta +n_1y^{n_1}\int _{y}^\infty \eta ^{-n_1-1}{\widetilde{u}}(\eta ,\xi )d\eta \right] \right) \\&=\dfrac{\partial }{\partial \xi }\left( -y\frac{\partial J_0}{\partial y}(y,\xi )\right) . \nonumber \end{aligned}$$
(96)

Since the stopping time \(\tau _\xi \) is characterized as

$$\begin{aligned} \tau _\xi = \inf \{t\ge 0 \mid y_t \le z(\xi )\} \end{aligned}$$

from Lemma 3, we deduce that \({\widetilde{H}}(y, \xi )\) satisfies the following ODE:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {L}}{\widetilde{H}}(y,\xi )= 0,\;\;&{}\text{ if }\;\;y>z(\xi ),\\ {\widetilde{H}}(y,\xi ) = {\widetilde{Q}}(y,\xi ),\;\;&{}\text{ if }\;\;y\le z(\xi ).\\ \end{array}\right. } \end{aligned} \end{aligned}$$

where we have characterized the boundary \(z(\xi )\) in (31).

As similar in the proof of Lemma 3, we can easily obtain the solution of \({\widetilde{H}}(y,\xi )\), i.e.,

$$\begin{aligned} {\widetilde{H}}(y,\xi ) = \left\{ \begin{aligned}&-n_2 A(\xi ) y^{n_2}\quad&\text{ if }\quad y>z(\xi ), \\&{\widetilde{Q}}(y,\xi )\quad&\text{ if }\quad y\le z(\xi ), \end{aligned} \right. \end{aligned}$$
(97)

where we have used the fact that \({\widetilde{H}}(y,\xi )\) is continuous at \(y=z(\xi )\) and the corresponding algebraic Eq. (31). Recall that \(A(\xi )\) is given by

$$\begin{aligned} A(\xi )=\dfrac{2}{\theta ^2(n_1-n_2)}\left[ -u'(\xi )\dfrac{(z(\xi ))^{-n_2}}{n_2} + \dfrac{(z(\xi ))^{1-n_2}}{n_2-1}\right] . \end{aligned}$$

It follows from (94), (95), (96), and (97) that

$$\begin{aligned} \begin{aligned}&y^* {\mathbb {E}}\left[ \int _0^\infty H_t c^*(y_t^*) dt\right] \\ =&\left\{ \begin{aligned}&-n_2(y^*)^{n_2} \int _{M_{0-}}^{\infty } A(\xi )d\xi -y^*\frac{\partial J_0}{\partial y }(y^*,M_{0-}) \quad&\text{ if }\quad z(M_{0-})<I_z(y^*) \\&-n_2(y^*)^{n_2}\int _{I_z(y^*)}^{\infty }A(\xi )d\xi -y^*\frac{\partial J_0}{\partial y }(y^*,I_z(y^*))&\text{ if }\quad z(M_{0-})\ge y^*. \end{aligned} \right. \\ =&-y^*\frac{\partial J}{\partial y}(y^*,M_{0-})\\ =&y^* w \end{aligned} \end{aligned}$$
(98)

where we have used the fact that \(y^*>0\) is a unique solution such that

$$\begin{aligned} w=-y^*\frac{\partial J}{\partial y}(y^*,M_{0-}). \end{aligned}$$

Thus, \((c^*(y_t^*))_{t=0}^\infty \) satisfies the static budget constraint (13) with equality, i.e.,

$$\begin{aligned} {\mathbb {E}}\left[ \int _0^\infty H_t c^*(y_t^*) dt\right] =w. \end{aligned}$$
(99)

(Step 4) The duality relationship (40) is established. Moreover, the candidate consumption \((c^*(y_t^*))_{t=0}^\infty \) is optimal.

Proof of Step 4. Since

$$\begin{aligned} w= {\mathbb {E}}\left[ \int _0^\infty H_t c^*(y_t^*) dt\right] = {\mathbb {E}}^{{\mathbb {Q}}}\left[ \int _0^\infty e^{-rt}c^*(y_t^*) dt\right] <\infty , \end{aligned}$$

we deduce that for given any \(T>0\),

$$\begin{aligned} \int _0^T c^*(y_t^*) dt < \infty \;\;\text{ a.s. } \end{aligned}$$

Thus, it follows from Theorem 9.4 in Karatzas and Shreve (1998) that there exists a portfolio process \((\pi ^*(y_t^*))_{t=0}^\infty \) such that \((c^*(y_t^*), \pi ^*(y_t^*))_{t=0}^\infty \) is admissible at x. Moreover, the corresponding wealth process \(W_t^{c^*,\pi ^*}\) is

$$\begin{aligned} W_t^{c^*,\pi ^*}=\dfrac{1}{H_t}{\mathbb {E}}_t\left[ \int _t^\infty H_s c^{*}(y_s^*)ds\right] \end{aligned}$$
(100)

and the dynamics of \(W_t^{c^*,\pi ^*}\) follows

$$\begin{aligned} dW_t^{c^*,\pi ^*} =[rW_t^{c^*(y_t^*),\pi ^*(y_t^*)} + (\mu -r)\pi ^*(y_t^*) - c^*(y_t^*)] dt + \sigma \pi ^*(y_t^*) dB_t. \end{aligned}$$
(101)

Recall the following weak duality stated in (39)

$$\begin{aligned} V(w,M_{0-})\le \inf _{y>0} \Big (J(y,M_{0-})+yw\Big ). \end{aligned}$$

It follows from

$$\begin{aligned} {\mathbb {E}}\left[ \int _0^\infty H_t c^*(y_t^*) dt\right] =w\;\;\text{ and }\;\;{\widetilde{u}}(y_t^*,M^*(y_t^*))=u(c^*(y_t^*))-y_t^*c^*(y_t^*), \end{aligned}$$

that

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} u(c^*(y_t^*))dt\right] =&{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}{\tilde{u}}(y_t^*,M^*(y_t^*))dt\right] +{\mathbb {E}}\left[ \int _0^\infty e^{-\delta t}y^*_t c^*(y_t^*) dt\right] \\ =&J(y^*,M_{0-})+y^*w\\ =&\inf _{y>0} \Big (J(y,M_{0-})+yw\Big )\\ \ge&V(w,M_{0-}). \end{aligned} \end{aligned}$$

Since \((c^*(y_t^*), \pi ^*(y^*))_{t=0}^\infty \) is admissible, we deduce that

$$\begin{aligned} V(w,M_{0-})={\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} u(c^*(y_t^*))dt\right] =\inf _{y>0} \Big (J(y,M_{0-})+yw\Big ). \end{aligned}$$
(102)

This completes the proof.

Proof of Theorem 2

Let us temporarily denote \({\mathcal {W}}(y)\) by

$$\begin{aligned} {\mathcal {W}}(y) \equiv -\dfrac{\partial J}{\partial y}(y, M^*(y))={\mathbb {E}}\left[ \int _0^\infty H_t c^*(y_t) dt\right] . \end{aligned}$$

Note that

$$\begin{aligned} {\mathcal {W}}(y^*) =w. \end{aligned}$$

Then,

$$\begin{aligned} y{\mathcal {W}}(y) = -y\dfrac{\partial J}{\partial y}(y, M^*(y))={\mathbb {E}}\left[ \int _0^\infty e^{-\delta t} y_t c^*(y_t) dt\right] . \end{aligned}$$

The Markov property implies that

$$\begin{aligned} \begin{aligned} y_t^*{\mathcal {W}}(y_t^*) =&{\mathbb {E}}_t\left[ \int _t^\infty e^{-\delta (s-t)}y_s c^*(y_s^*) ds\right] . \end{aligned} \end{aligned}$$

It follows from (100) that

$$\begin{aligned} {\mathcal {W}}(y_t^*) = \dfrac{1}{H_t}{\mathbb {E}}_t\left[ \int _t^\infty H_sc^*(y_s^*) ds\right] = W_t^{c^*,\pi ^*}. \end{aligned}$$

That is, \(W_t^{c^*,\pi ^*}={\mathcal {W}}(y_t^*)\) is the optimal wealth process and \({\mathcal {W}}(y_t^*)\) is given by

$$\begin{aligned} \begin{aligned} {\mathcal {W}}(y_t^*)=&-\frac{\partial J}{\partial y}(y_t^*,M^*(y_t^*))=-\frac{\partial J_0}{\partial y}(y_t^*,M_t^*)-n_2(y_t^*)^{n_2-1}\int _{M_t^*}^\infty A(\xi ) d\xi . \end{aligned}\nonumber \\ \end{aligned}$$
(103)

Note that \(M_t^*=M^*(y_t^*)\).

By applying the generalized Itô’s Lemma (see Harrison 1985) to \({\mathcal {W}}(y_t^*)\), we deduce

$$\begin{aligned} d{\mathcal {W}}(y_t^*)&=-\frac{\partial ^2 J}{\partial y^2}(y_t^*,M_t^*)dy_t^*-\frac{1}{2}\frac{\partial ^3 J}{\partial y^3}(y_t^*,M_t^*)(dy_t^*)^2 \nonumber \\&\quad -\frac{\partial ^2 J}{\partial y \partial m}(y_t^*,M_t^*)dM_t^*. \end{aligned}$$
(104)

It follows from (b) in Proposition 3 and (80) that

$$\begin{aligned} \frac{\partial ^2 J}{\partial y \partial m}(y_t^*,M_t^*)=&-\dfrac{\partial H}{\partial y}H(y_t^*, M_t^*)+\dfrac{\partial {\mathcal {Q}}}{\partial y}(y_t^*,M_t^*).\\ =&\left\{ \begin{aligned}&-A(M^*(y_t^*))(y^*_t)^{n_2}+{\mathcal {Q}}(y_t^*,M^*(y_t^*))\le 0,~~&\text{ if }~~y_t^*>z(M_t^*),\nonumber \\&-{\mathcal {Q}}(y^*_t,M^*(y_t^*))+{\mathcal {Q}}(y^*_t,M^*(y_t^*))=0,~~&\text{ if }~~y_t^*=z(M_t^*), \end{aligned} \right. \end{aligned}$$
(105)

Since \(H_y(y_t^*,M_t^*)={\mathcal {Q}}_y(y_t^*, M_t^*)\) only when \(y_t^*=z(M_t^*)\) or \(M_t^*\) increases, we deduce that

$$\begin{aligned} \frac{\partial ^2 J}{\partial y \partial m}(y_t^*,M_t^*) dM_t^*=0 \;\;\text{ for } \text{ all }\;\;t \ge 0. \end{aligned}$$
(106)

Note that for all \(y\ge z(m)\),

$$\begin{aligned} {\mathcal {L}}J(y,m)+{\widetilde{u}}(y,m)=0 \end{aligned}$$

By differentiating the both sides of the above equation with respect to y, we can easily obtain

$$\begin{aligned} \begin{aligned}&\frac{\theta ^2}{2}(y_t^*)^2\frac{\partial ^3 J}{\partial y^3}(y_t^*,M_t^*)+(\delta -r)y_t^*\frac{\partial ^2 J}{\partial y^2}(y_t^*,M_t^*)\\ =&r\frac{\partial J}{\partial y}(y_t^*,M_t^*)+ c_t^*-\theta ^2 y_t^*\frac{\partial J}{\partial y}(y_t^*, M_t^*) \end{aligned} \end{aligned}$$
(107)

It follows from (104), (105), (106), and (107) that we have

$$\begin{aligned} \begin{aligned} d{\mathcal {W}}(y_t^*)&=-\frac{\partial ^2 J}{\partial y^2}(y_t^*,M_t^*)dy_t^*-\frac{1}{2}\frac{\partial ^3 J}{\partial y^3}(y_t^*,M_t^*)(dy_t^*)^2\\&=\left[ r{\mathcal {W}}(y_t^*) -c_t^*+\theta ^2y_t^*\frac{\partial ^2 J}{\partial y^2}(y_t^*,M_t^*)\right] dt+\theta y_t^*\frac{\partial ^2 J}{\partial y^2}(y_t^*,M_t^*)dB_t. \end{aligned} \end{aligned}$$
(108)

By comparing the dynamics of \(e^{-rt}W_t^{c^*,\pi ^*}\) in (101) with \(e^{-rt}{\mathcal {W}}(y_t^*)\) in (108), we can obtain the optimal portfolio process \(\pi _t^*=\pi ^*(y_t^*)\) given by

$$\begin{aligned} \begin{aligned} \pi _t^*=&\frac{\theta }{\sigma }y_t^*\frac{\partial ^2 J}{\partial y^2}(y_t^*,M_t^*)\\ =&\frac{\theta }{\sigma }\left( y_t^*\frac{\partial ^2 J_0}{\partial y^2}(y_t^*,M_t^*)+n_2(n_2-1)(y_t^*)^{n_2-1}\int _{M_t^*}^\infty A(\xi ) d\xi \right) . \end{aligned} \end{aligned}$$

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Park, K. Portfolio selection with drawdown constraint on consumption: a generalization model. Math Meth Oper Res 93, 243–289 (2021). https://doi.org/10.1007/s00186-020-00734-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-020-00734-6

Keywords