Estimating allocations for Value-at-Risk portfolio optimization | Mathematical Methods of Operations Research Skip to main content
Log in

Estimating allocations for Value-at-Risk portfolio optimization

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Value-at-Risk, despite being adopted as the standard risk measure in finance, suffers severe objections from a practical point of view, due to a lack of convexity, and since it does not reward diversification (which is an essential feature in portfolio optimization). Furthermore, it is also known as having poor behavior in risk estimation (which has been justified to impose the use of parametric models, but which induces then model errors). The aim of this paper is to chose in favor or against the use of VaR but to add some more information to this discussion, especially from the estimation point of view. Here we propose a simple method not only to estimate the optimal allocation based on a Value-at-Risk minimization constraint, but also to derive—empirical—confidence intervals based on the fact that the underlying distribution is unknown, and can be estimated based on past observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerbi C, Tasche D (2002) On the coherence of expected shortfall. J Bank Financ 26: 1487–1503

    Article  Google Scholar 

  • Alexander G, Baptista A (2002) Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. J Econ Dyn Control 26: 1159–1193

    Article  MATH  MathSciNet  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9: 203–228

    Article  MATH  MathSciNet  Google Scholar 

  • Basak S, Shapiro A (2001) Value-at-risk management: optimzl policies and asset prices. Rev Financ Stud 14: 371–405

    Article  Google Scholar 

  • Bawa VS (1978) Safety-first, stochastic dominance, and optimal portfolio choice. J Financ Quant Anal 13: 255–271

    Article  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugel J (2006) Statistics of extremes. Wiley/Interscience, New York

    Google Scholar 

  • Charpentier A, Oulidi A (2007) Nonparametric quantile estimation. (submitted)

  • Cohen JB, Zinbarg ED (1967) Investment analysis and portfolio management. Homewood, Ill.: Richard D. Irwin, Inc.

  • Coles JL, Loewenstein U (1988) Equilibrium pricing and portfolio composition in the presence of uncertain parameters. J Financ Econ 22: 279–303

    Article  Google Scholar 

  • Cornish EA, Fisher RA (1937) Moments and cumulants in the specification of distributions. Rev Int Stat Inst 5: 307–320

    Article  Google Scholar 

  • Dowd K, Blake D (2006) After VaR : the theory, estimation, and insurance applications of quantile-based risk measures. J Risk Insur 73: 193–229

    Article  Google Scholar 

  • Duffie D, Pan J (1997) An overview of value at risk. J Deriv 4: 7–49

    Article  Google Scholar 

  • Embrechts P, Kluppelberg C, Mikosh T (1997) Modeling extremal events. Springer, Berlin

    Google Scholar 

  • Feller GW (1968) Generalized asymptotic expansions of Cornish-Fisher type. Ann Math Stat 39: 1264–1273

    Article  Google Scholar 

  • Fishburn PC (1970) Utility theory for decision-making. Wiley, New York

    MATH  Google Scholar 

  • Föllmer H, Schied A (2004) Stochastic finance: an introduction in discrete time. Walter de Gruyter, New York

    Book  MATH  Google Scholar 

  • Gaivoronski AA, Pflug G (2000) Value-at-Risk in portfolio optimization: properties and computational approach. Working Paper, 00-2, Norwegian University of Sciences & Technology

  • Gustafsson J, Hagmann J, Nielsen JP, Scaillet O (2006) Local Transformation Kernel Density Estimation of Loss. Cahier de Recherche 2006-10, HEC Genve

  • Harrel FE, Davis CE (1982) A new distribution free quantile estimator. Biometrika 69: 635–670

    Article  MathSciNet  Google Scholar 

  • Hill GW, Davis AW (1968) Generalized asymptotic expansions of Cornish-Fisher type. Ann Math Stat 39: 1264–1273

    Article  MATH  MathSciNet  Google Scholar 

  • Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 50: 361–365

    Article  Google Scholar 

  • Ingersoll Jonathan E (1987) Theory of financial decision making. Rowman & Littlefield, 496 pp. ISBN:0847673596–9780847673599

  • Jorion P (1997) Value at risk : the new benchmark for controlling market risk. McGraw-Hill, New York

    Google Scholar 

  • Kast R, Luciano E, Peccati L (1998) VaR and optimization: 2nd international workshop on preferences and decisions. Proceedings of the conference, Trento, 1–3 July 1998

  • Klein RW, Bawa VS (1976) The effect of estimation risk on optimal portfolio choice. J Financ Econ 3: 215–231

    Article  Google Scholar 

  • Kroll Y, Levy H, Markowitz HM (1984) Mean-variance versus direct utility maximization. J Financ 39: 47–61

    Article  Google Scholar 

  • Levy H, Sarnat M (1972) Safety first–an expected utility principle. J Financ Quant Anal 7: 1829–1834

    Article  Google Scholar 

  • Lemus G (1999) Portfolio optimization with quantile-based risk measures. Ph.D. Thesis. MIT

  • Litterman R (1997) Hot spots and edges II. Risk 10: 38–42

    Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Financ 7: 77–91

    Article  Google Scholar 

  • Merton RC (1992) Continuous time finance 2nd edn. Blackwell Publishers, Oxford

    Google Scholar 

  • Padgett WJ (1986) A kernel-type estimator of a quantile function from right-censored data. J Am Stat Assoc 81: 215–222

    Article  MATH  MathSciNet  Google Scholar 

  • Park C (2006) Smooth nonparametric estimation of a quantile function under right censoring using beta kernels. Technical Report (TR 2006-01-CP), Departement of Mathematical Sciences, Clemson University

  • Quiggin J (1993) Generalized expected utility theory: the rank-dependent expected utility model. Kluwer/Nijhoff, Dordrecht/The Hague

    Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2: 21–41

    Google Scholar 

  • Roy AD (1952) Safety first and the holding of assets. Econometrica 20: 431–449

    Article  MATH  Google Scholar 

  • Waart AW van der (1998) Asymptotic statistics. Cambridge University Press, London

    Google Scholar 

  • von Neumann J, Morgenstern O (1947) Theory of games and economic behaviour. Princeton University Press, Princeton

    Google Scholar 

  • Wang S (1996) Premium calculation by transforming the layer premium density. ASTIN Bull 26: 71–92

    Article  Google Scholar 

  • Wirch J, Hardy M (1999) A synthesis of risk measures for capital adequacy. Insur Math Econ 25: 337–348

    Article  MATH  Google Scholar 

  • Yaari M (1987) A dual theory of choice under risk. Econometrica 55: 95–115

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Charpentier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charpentier, A., Oulidi, A. Estimating allocations for Value-at-Risk portfolio optimization. Math Meth Oper Res 69, 395–410 (2009). https://doi.org/10.1007/s00186-008-0244-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-008-0244-7

Keywords

Navigation