A sensibility study of the autobinomial model estimation methods based on a feature similarity index | Computational Statistics Skip to main content
Log in

A sensibility study of the autobinomial model estimation methods based on a feature similarity index

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The estimation of parameters in the Autobinomial model is an important task for characterizing the content of an image and generating synthetic textures. This paper compares the performance of three estimation methods of the model: coding, maximum pseudo-likelihood and conditional least squares, under textures with different levels of additive contamination, using a feature similarity image index, via Monte Carlo studies. This novel framework quantifies the similarity between the original texture and its texture regenerated by each method. Differences in performance were tested with a Repeated Measures ANOVA model design. Simulation results show that the Conditional Least Squares method is associated with the highest value of the similarity image measure in contaminated textures, while Coding and Maximum Pseudo-Likelihood methods have a comparable behavior and there is no clear pattern whether to prefer one over the other. An application for landscape classification using real Landsat images with different spatial resolutions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agresti A (1996) An introduction to categorical data analysis. Wiley, New York

    MATH  Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. U.S. Government Printing Office, USA

    Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B 36:192–236

    MathSciNet  MATH  Google Scholar 

  • Besag J (1975) Statistical analysis of non-lattice data. J R Stat Soc Ser D (The Statistician) 24(3):179–195

    MathSciNet  Google Scholar 

  • Besag J, Moran PA (1975) On the estimation of spatial interaction in Gaussian lattice processes. Biometrika 62(3):555–562

    Article  MathSciNet  MATH  Google Scholar 

  • Besag J (1977) Efficiency of pseudo likelihood estimation for simple Gaussian fields. Biometrika 64(3):616–618

    Article  MathSciNet  MATH  Google Scholar 

  • Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B–48:259–302

    MathSciNet  MATH  Google Scholar 

  • Borges CF (1999) On the estimation of Markov random field parameters. IEEE Trans Pattern Anal Mach Intel 21(3):216–224

    Article  Google Scholar 

  • Cariou C, Chehdi K (2008) Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation-maximization algorithm. Pattern Recogn Lett 29(7):905–917

    Article  Google Scholar 

  • Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 5(1):25–39

    Article  Google Scholar 

  • Datcu M, Seidel K, Walessa M (1998) Spatial information retrieval from remote-sensing images. I. Information theoretical perspective. IEEE Trans Geosci Remote Sens 36(5):1431–1445

    Article  Google Scholar 

  • Derin H, Elliott H (1978) Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans Pattern Anal Mach Intel PAMI–9(1):39–55

    Google Scholar 

  • Elfadel I, Picard R (1994) Gibbs random fields, cooccurrences, and texture modeling. IEEE Trans Pattern Anal Mach Intel 16(1):24–37

    Article  Google Scholar 

  • Fox AJ (1972) Outliers in time series. J R Stat Soc 34:350–363

    MathSciNet  MATH  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    Article  MATH  Google Scholar 

  • Gleich D (2012) Markov random field models for non-quadratic regularization of complex SAR images. IEEE J Select Top Appl Earth Observ Remote Sens 5(3):952–961

    Article  MathSciNet  Google Scholar 

  • Greenhouse S, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24(2):95–112

    Article  MathSciNet  Google Scholar 

  • Gürelli MI, Onural L (1994) On a parameter estimation method for Gibbs–Markov random fields. IEEE Trans Pattern Anal Mach Intell 16(4):424–430

    Article  Google Scholar 

  • Hassner M, Sklansky J (1980) The use of Markov random fields as models of texture. Comput Graph Image Process 12(4):357–370

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Hebar M, Gleich D, Cucej Z (2009) Autobinomial model for SAR image despeckling and information extraction. IEEE Trans Geosci Remote Sens 47(8):2818–2835

    Article  Google Scholar 

  • Huynh H, Feldt LS (1976) Estimation at the box correction for degrees of freedom for sample data in randomised block and split-plot designs. J Educ Stat 1(1):69–82

    Article  Google Scholar 

  • Johansson JO (2001) Parameter-estimation in the auto-binomial model using the coding and pseudo-likelihood method approached with simulated annealing and numerical optimization. Pattern Recogn Lett 22(11):1233–1246

    Article  Google Scholar 

  • Kaneko H, Yodogawa E (1982) A Markov random field application to texture classification. In: Proceedings of conference on pattern recognition and image processing, IEEE Computer Society, Los Vegas, NE pp 221–225

  • Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th edn. McGraw Hill, New York

    Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  MathSciNet  MATH  Google Scholar 

  • Lele SR, Ord JK (1986) Conditional least squares estimation for spatial processes: some asymptotics results. Tech Report No. 1986–65. Pennsylvania State University Department Statistics

  • Mauchly JW (1940) Significance test for sphericity of a normal \(n\)-variate distribution. Ann Math Stat 11(2):204–209

    Article  MathSciNet  MATH  Google Scholar 

  • Molina DE, Datcu M, Gleich D (2009) Cramer-Rao bound-based evaluation of texture extraction from SAR images. In: 16th international conference on systems, signals and image processing, pp 1–4

  • Molina DE, Gleich D, Datcu M (2012) Evaluation of Bayesian despeckling and texture extraction methods based on Gauss–Markov and auto-binomial Gibbs random fields: application to terraSAR-X data. IEEE Trans Geosci Remote Sens 50(5):2001–2025

    Article  Google Scholar 

  • Reulke R, Lippok A (2008) Markov random fields (MRF)-based texture segmentation for road detection. ISPRS Beijing, pp 615–620

  • Schröder M, Seidel S, Datcu M (1997) Gibbs random field models for image content characterization. In: IEEE international geoscience and remote sensing symposium (IGARSS97), pp 258–260

  • Schröder M, Rehrauer H, Seidel K, Datcu M (1998) Spatial information retrieval from remote sensing images: part B. Gibbs Markov random fields. IEEE Trans Geosci Remote Sens 36:1446–1455

    Article  Google Scholar 

  • Vallejos RO, García-Donato G (2006) Bayesian analysis of contaminated quarter plane moving average models. J Stat Comput Simul 76(2):131–147

    Article  MathSciNet  MATH  Google Scholar 

  • Winkler G (1995) Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Zhang L, Zhang L, Moun X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper has been partially supported by SGCyT-UNS and SeCyT-UNC. The imagery used in the application section was kindly provided by CONAE, Argentina. The authors want to thank the Editor, Associate Editor and the anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina Pistonesi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistonesi, S., Martinez, J. & Ojeda, S.M. A sensibility study of the autobinomial model estimation methods based on a feature similarity index. Comput Stat 31, 1327–1357 (2016). https://doi.org/10.1007/s00180-015-0634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0634-2

Keywords

Navigation