Attractors in Boolean networks: a tutorial | Computational Statistics Skip to main content
Log in

Attractors in Boolean networks: a tutorial

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Boolean networks are a popular class of models for the description of gene-regulatory networks. They model genes as simple binary variables, being either expressed or not expressed. Simulations of Boolean networks can give insights into the dynamics of cellular systems. In particular, stable states and cycles in the networks are thought to correspond to phenotypes. This paper presents approaches to identify attractors in synchronous, asynchronous and probabilistic Boolean networks and gives examples of their usage in the BoolNet R package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R, Othmer H (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223(1): 1–18

    Article  MathSciNet  Google Scholar 

  • Aldana M (2003) Boolean dynamics of networks with scale-free topology. Physica D: Nonlinear Phenomena 185(1): 45–66

    Article  MathSciNet  MATH  Google Scholar 

  • Bornholdt S (2005) Systems biology. Less is more in modeling large genetic networks. Science 310(5747): 449–451

    Article  Google Scholar 

  • Bornholdt S (2008) Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 5(Suppl. 1): S85–S94

    Article  Google Scholar 

  • Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6(3): e1000702

    Article  MathSciNet  Google Scholar 

  • de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1): 67–103

    Article  Google Scholar 

  • Dojer N, Gambin A, Mizera A, Wilczyński B, Tiuryn J (2006) Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform 7: 249

    Article  Google Scholar 

  • Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14): e124–e131

    Article  Google Scholar 

  • Garg A, Banerjee D, De Micheli G (2008) Implicit methods for probabilistic modeling of gene regulatory networks. In: Proceedings of the 30th annual international IEEE EMBS conference, pp 4621–4627

  • Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17): 1917–1925

    Article  Google Scholar 

  • Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical networks. J Theor Biol 39(1): 103–129

    Article  Google Scholar 

  • Goodwin B (1963) Temporal organization in cells: a dynamic theory of cellular control processes. Academic Press, London

    Google Scholar 

  • Grzegorczyk M, Husmeier D, Rahnenführer J (2010) Modelling non-stationary dynamic gene regulatory processes with the BGM model. Comput Stat 26(2): 199–218

    Article  Google Scholar 

  • Harvey I, Bossomaier T (1997) Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the forth European conference on artificial life, pp 67–75

  • Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med 77(6): 469–480

    Article  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigensis in randomly constructed genetic nets. J Theor Biol 22(3): 437–467

    Article  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with canalyzing Boolean rules are always stable. PNAS 101(49): 17,102–17,107

    Article  Google Scholar 

  • Lähdesmäki H, Shmulevich I, Yli-Harja O (2003) On learning gene regulatory networks under the Boolean network model. Mach Learn 52(1–2): 147–167

    Article  MATH  Google Scholar 

  • Li F, Long T, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101: 4781–4786

    Article  Google Scholar 

  • Liang S, Fuhrman S, Somogyi R (1998) REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 3: 18–29

    Google Scholar 

  • Lynch J (1995) On the threshold of chaos in random Boolean cellular automata. Random Struct Algorithms 6(2–3): 239–260

    Article  MathSciNet  MATH  Google Scholar 

  • Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10): 1378–1380

    Article  Google Scholar 

  • Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES, Hartemink AJ, Haase SB (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453(7197): 944–947

    Article  Google Scholar 

  • Sahin O, Fröhlich H, Löbke C, Korf U, Burmester S, Majety M, Mattern J, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D (2009) Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 3(1): 1

    Article  Google Scholar 

  • Samuelsson B, Troein C (2003) Superpolynomial growth in the number of attractors in Kauffman networks. Phys Rev Lett 90(9): 098701

    Article  MathSciNet  Google Scholar 

  • Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene-regulatory networks. Bioinformatics 18(2): 261–274

    Article  Google Scholar 

  • Socolar JE, Kauffman SA (2003) Scaling in ordered and critical random Boolean networks. Phys Rev Lett 90(6): 068–702

    Article  Google Scholar 

  • Thomas R (1991) Regulatory networks seen as asynchronous automata: a logical description. J Theor Biol 153(1): 1–23

    Article  Google Scholar 

  • Wawra C, Kühl M, Kestler HA (2007) Extended analyses of the Wnt/β-catenin pathway: Robustness and oscillatory behaviour. FEBS Lett 581(21): 4043–4048

    Article  Google Scholar 

  • Xiao Y, Dougherty ER (2007) The impact of function perturbations in Boolean networks. Bioinformatics 23(10): 1265–1273

    Article  Google Scholar 

  • Zhou D, Müssel C, Lausser L, Hopfensitz M, Kühl M, Kestler HA (2009) Boolean networks for modeling and analysis of gene regulation. Ulmer Informatik-Bericht 2009–2010, Ulm University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans A. Kestler.

Additional information

Martin Hopfensitz and Christoph Müssel contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopfensitz, M., Müssel, C., Maucher, M. et al. Attractors in Boolean networks: a tutorial. Comput Stat 28, 19–36 (2013). https://doi.org/10.1007/s00180-012-0324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0324-2

Keywords

Navigation