Partial algebras for Łukasiewicz logics and its extensions | Archive for Mathematical Logic Skip to main content
Log in

Partial algebras for Łukasiewicz logics and its extensions

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

It is a well-known fact that MV-algebras, the algebraic counterpart of Łukasiewicz logic, correspond to a certain type of partial algebras: lattice-ordered effect algebras fulfilling the Riesz decomposition property. The latter are based on a partial, but cancellative addition, and we may construct from them the representing ℓ-groups in a straightforward manner. In this paper, we consider several logics differing from Łukasiewicz logics in that they contain further connectives: the PŁ-, PŁ'-, PŁ'-, and ŁΠ-logics. For all their algebraic counterparts, we characterise the corresponding type of partial algebras. We moreover consider the representing f-rings. All in all, we get three-fold correspondences: the total algebras - the partial algebras - the representing rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaz, M.: Infinite-valued Gödel logics with 0–1-projections and relativizations. In: P. Hájek (ed.), Gödel '96. Logical foundations of mathematics, computer science and physics – Kurt Gödel's legacy, Springer-Verlag., Berlin 1996, pp. 23–33

  2. Birkhoff, G.: Lattice Theory. AMS Coll. Publ., Rhode Island 1995 (3-rd edition)

  3. Chovanec, F., Kopka, F.: Boolean D-posets. Tatra Mt. Math. Publ. 10, 183–197 (1997)

    Google Scholar 

  4. Cintula, P.: A note on the definition of the ŁΠ-algebras. Soft Comp. to appear

  5. Cignoli, R., D'Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publ., Dordrecht 2000

  6. Di Nola, A., Dvurečenskij, A.: Product MV-algebras. Mult.-Valued Log. 6, 193–215 (2001)

    Google Scholar 

  7. Dvurečenskij, A.: Product effect algebras. Int. J. Theor. Phys. 41, 1827–1839 (2002)

    Article  Google Scholar 

  8. Dvurečenskij, A., Pulmannová, A.: New trends in quantum structures. Kluwer Academic Publ., Dordrecht, and Ister Science, Bratislava 2000

  9. Esteva, F., Godo, L.: Putting together Łukasiewicz and product logics. Mathware Soft Comput. 6, 219–234 (1999)

    Google Scholar 

  10. Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Logic 39, 103–124 (2000)

    Article  Google Scholar 

  11. Esteva, F., Godo, L., Montagna, F.: The LΠ and logics: Two complete fuzzy systems joining Łukasiewicz and product logics. Arch. Math. Logic 40, 39–67 (2001)

    Article  Google Scholar 

  12. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Google Scholar 

  13. Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963

  14. Gerla, B.: Rational Łukasiewicz logic and DMV-algebras. Neural Network World 11, 579–594 (2001)

    Google Scholar 

  15. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence, 1986

  16. Greechie, R.J., Foulis, D., Pulmannová, S.: The center of an effect algebra. Order 12, 91–106 (1995)

    Article  Google Scholar 

  17. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht 1998

  18. Hájek, P., Godo, L., Esteva, F.: A complete many-valued logic with product- conjunction. Arch. Math. Logic 35, 191–208 (1996)

    Google Scholar 

  19. Horčík, R., Cintula, P.: Product Łukasiewicz logic. Arch. Math. Logic 43, 477–503 (2004)

    Article  Google Scholar 

  20. Marra, V., Mundici, D.: Łukasiewicz logic and Chang's MV-algebras in action. In: V.F. Hendricks et al. (eds.), Trends in logic. 50 years of Studia Logica. Kluwer Academic Publ., Dordrecht 2003, pp. 145–192

  21. Montagna, F.: An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. 9, 91–124 (2000)

    Article  Google Scholar 

  22. Montagna, F.: Functorial representation theorems for MVΔ algebras with additional operators. J. Algebra 238, 99–125 (2001)

    Article  Google Scholar 

  23. Montagna, F.: Subreducts of MV-algebras with product and product residuation. to appear

  24. Mundici, D.: Interpretation of AF C-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  Google Scholar 

  25. Montagna, F., Panti, G.: Adding structure to MV-algebras. J. Pure Appl. Algebra 164, 365–387 (2001)

    Article  Google Scholar 

  26. Pulmannová, S.: Divisible effect algebras and interval effect algebras. Comment. Math. Univ. Carolinae 42, 219–236 (2001)

    Google Scholar 

  27. Ravindran, K.: On a structure theory of effect algebras. Ph.D. Thesis, Kansas State University, Manhattan 1996

  28. Vetterlein, T.: BL-algebras and effect algebras. Soft Comp. to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vetterlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetterlein, T. Partial algebras for Łukasiewicz logics and its extensions. Arch. Math. Logic 44, 913–933 (2005). https://doi.org/10.1007/s00153-005-0296-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0296-9

Keywords

Navigation