Abstract
It is a well-known fact that MV-algebras, the algebraic counterpart of Łukasiewicz logic, correspond to a certain type of partial algebras: lattice-ordered effect algebras fulfilling the Riesz decomposition property. The latter are based on a partial, but cancellative addition, and we may construct from them the representing ℓ-groups in a straightforward manner. In this paper, we consider several logics differing from Łukasiewicz logics in that they contain further connectives: the PŁ-, PŁ'-, PŁ'△-, and ŁΠ-logics. For all their algebraic counterparts, we characterise the corresponding type of partial algebras. We moreover consider the representing f-rings. All in all, we get three-fold correspondences: the total algebras - the partial algebras - the representing rings.
Similar content being viewed by others
References
Baaz, M.: Infinite-valued Gödel logics with 0–1-projections and relativizations. In: P. Hájek (ed.), Gödel '96. Logical foundations of mathematics, computer science and physics – Kurt Gödel's legacy, Springer-Verlag., Berlin 1996, pp. 23–33
Birkhoff, G.: Lattice Theory. AMS Coll. Publ., Rhode Island 1995 (3-rd edition)
Chovanec, F., Kopka, F.: Boolean D-posets. Tatra Mt. Math. Publ. 10, 183–197 (1997)
Cintula, P.: A note on the definition of the ŁΠ-algebras. Soft Comp. to appear
Cignoli, R., D'Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publ., Dordrecht 2000
Di Nola, A., Dvurečenskij, A.: Product MV-algebras. Mult.-Valued Log. 6, 193–215 (2001)
Dvurečenskij, A.: Product effect algebras. Int. J. Theor. Phys. 41, 1827–1839 (2002)
Dvurečenskij, A., Pulmannová, A.: New trends in quantum structures. Kluwer Academic Publ., Dordrecht, and Ister Science, Bratislava 2000
Esteva, F., Godo, L.: Putting together Łukasiewicz and product logics. Mathware Soft Comput. 6, 219–234 (1999)
Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Logic 39, 103–124 (2000)
Esteva, F., Godo, L., Montagna, F.: The LΠ and logics: Two complete fuzzy systems joining Łukasiewicz and product logics. Arch. Math. Logic 40, 39–67 (2001)
Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)
Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963
Gerla, B.: Rational Łukasiewicz logic and DMV-algebras. Neural Network World 11, 579–594 (2001)
Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence, 1986
Greechie, R.J., Foulis, D., Pulmannová, S.: The center of an effect algebra. Order 12, 91–106 (1995)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht 1998
Hájek, P., Godo, L., Esteva, F.: A complete many-valued logic with product- conjunction. Arch. Math. Logic 35, 191–208 (1996)
Horčík, R., Cintula, P.: Product Łukasiewicz logic. Arch. Math. Logic 43, 477–503 (2004)
Marra, V., Mundici, D.: Łukasiewicz logic and Chang's MV-algebras in action. In: V.F. Hendricks et al. (eds.), Trends in logic. 50 years of Studia Logica. Kluwer Academic Publ., Dordrecht 2003, pp. 145–192
Montagna, F.: An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. 9, 91–124 (2000)
Montagna, F.: Functorial representation theorems for MVΔ algebras with additional operators. J. Algebra 238, 99–125 (2001)
Montagna, F.: Subreducts of MV-algebras with product and product residuation. to appear
Mundici, D.: Interpretation of AF C★-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)
Montagna, F., Panti, G.: Adding structure to MV-algebras. J. Pure Appl. Algebra 164, 365–387 (2001)
Pulmannová, S.: Divisible effect algebras and interval effect algebras. Comment. Math. Univ. Carolinae 42, 219–236 (2001)
Ravindran, K.: On a structure theory of effect algebras. Ph.D. Thesis, Kansas State University, Manhattan 1996
Vetterlein, T.: BL-algebras and effect algebras. Soft Comp. to appear
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vetterlein, T. Partial algebras for Łukasiewicz logics and its extensions. Arch. Math. Logic 44, 913–933 (2005). https://doi.org/10.1007/s00153-005-0296-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-005-0296-9