Evaluation of an appearance-based 3D face tracker using dense 3D data | Machine Vision and Applications Skip to main content
Log in

Evaluation of an appearance-based 3D face tracker using dense 3D data

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The ability to detect and track human heads and faces in video sequences can be considered as the finest level of any video surveillance system. In this paper, we introduce a general framework for evaluating our recent appearance-based 3D face tracker using dense 3D data. This tracker combines online appearance models with an image registration technique and can run in real-time and is drift insensitive. More precisely, accuracy and usability of this developed tracker are assessed using stereo-based range facial data from which ground truth 3D motions are computed. This evaluation quantifies the monocular tracker accuracy, and identifies its working range in 3D space. Additionally, this evaluation gives some hints on how the tracker can be fully exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlberg J. (2002). An active model for facial feature tracking. EURASIP J. Appl. Signal Proc. 2002(6): 566–571

    Article  Google Scholar 

  2. Ahlberg, J.: Model-based coding: extraction, coding, and evaluation of face model parameters. PhD thesis, No. 761, Linköping University, Sweden (2002)

  3. Besl P. and McKay N. (1992). A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2): 239–256

    Article  Google Scholar 

  4. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’99, pp. 187–194 (1999)

  5. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Machine Intell. 1–12 (2003)

  6. Cai Q. and Aggarwal J.K. (1999). Tracking human motion in structured environments using a distributed-camera system. IEEE Trans. Pattern Anal. Machine Intell. 21(12): 1241–1247

    Article  Google Scholar 

  7. Cascia M.L., Sclaroff S. and Athitsos V. (2000). Fast, reliable head tracking under varying illumination: an approach based on registration of texture-mapped 3D models. IEEE Trans. Pattern Anal. Machine Intell. 22(4): 322–336

    Article  Google Scholar 

  8. Dornaika F. and Ahlberg J. (2004). Fast and reliable active appearance model search for 3D face tracking. IEEE Trans. Systems Man Cybernet. Part B 34(4): 1838–1853

    Article  Google Scholar 

  9. Dornaika, F., Davoine, F.: Head and facial animation tracking using appearance-adaptive models and particle filters. In: IEEE Workshop on Real-Time Vision for Human–Computer Interaction, Washington DC, pp. 153–162 (2004)

  10. Dornaika, F., Davoine, F.: Simultaneous facial action tracking and expression recognition using a particle filter. In: IEEE International Conference on Computer Vision, pp. 1733–1738 (2005)

  11. Forster, F., Lang, M., Radic, B.: Real-time 3D and color camera. In: Proceedings of the International Conference on Augmented, Virtual Environments and Three-Dimensional Imaging, pp. 45–48 (2001)

  12. Gokturk, S.B., Bouguet, J.Y., Grzeszczuk, R.: A data-driven model for monocular face tracking. In: IEEE International Conference on Computer Vision, pp. 701–708 (2001)

  13. Harville, M., Rahimi, A., Darell, T., Gordon, G., Woodfill, J.: 3D pose tracking with linear depth and brightness constraints. In: IEEE International Conference on Computer Vision, pp. 206–213 (1999)

  14. Jebara, T.S., Pentland, A.: Parameterized structure from motion for 3D adaptative feedback tracking of faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 144–150 (1997)

  15. Jepson A.D., Fleet D.J. and El-Maraghi T.F. (2003). Robust online appearance models for visual tracking. IEEE Trans. Pattern Anal. Machine Intell. 25(10): 1296–1311

    Article  Google Scholar 

  16. Lee D. (2005). Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Machine Intell. 27(5): 827–832

    Article  Google Scholar 

  17. Lee L., Romano R. and Stein G. (2000). Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Trans. Pattern Anal. Machine Intell. 22(8): 758–767

    Article  Google Scholar 

  18. Malassiotis S. and Strintzis M.G. (2005). Robust real-time 3D head pose estimation from range data. Pattern Recogn. 38(8): 1153–1165

    Article  Google Scholar 

  19. Matthews I. and Baker S. (2004). Active appearance models revisited. Int. J. Computer Vision 60(2): 135–164

    Article  Google Scholar 

  20. Moreno, F., Tarrida, A., Andrade-Cetto, J., Sanfeliu, A.: 3D real-time tracking fusing color histograms and stereovision. In: IEEE International Conference on Pattern Recognition, pp. 368–371 (2002)

  21. Mouse, L.D.: Acoustic tracking system. http://www.vrdepot.com/ vrteclg.htm

  22. Proesmans, M., Gool, L.V., Oosterlinck, A.: Active acquisition of 3D shape for moving objects. In: Proceedings of the IEEE International Conference on Image Processing, pp. 647–650 (1996)

  23. Yang M.H., Kriegman D.J. and Ahuja N. (2002). Detecting faces in images: A survey. IEEE Trans. Pattern Anal. Machine Intell. 24(1): 34–58

    Article  Google Scholar 

  24. Zhou S., Chellappa R. and Mogghaddam B. (2004). Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans. Image Proc. 13(11): 1473–1490

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Dornaika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornaika, F., Sappa, A.D. Evaluation of an appearance-based 3D face tracker using dense 3D data. Machine Vision and Applications 19, 427–441 (2008). https://doi.org/10.1007/s00138-007-0091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0091-1

Keywords

Navigation