Quantum generalizations of the polynomial hierarchy with applications to QMA(2) | computational complexity Skip to main content
Log in

Quantum generalizations of the polynomial hierarchy with applications to QMA(2)

  • Published:
computational complexity Aims and scope Submit manuscript

This article has been updated

Abstract

The polynomial-time hierarchy (PH) has proven to be a powerful tool for providing separations in computational complexity theory (modulo standard conjectures such as PH do not collapse). Here, we study whether two quantum generalizations of PH can similarly prove separations in the quantum setting. The first generalization, \(\rm{QCPH}\), uses classical proofs, and the second, \(\rm{QPH}\), uses quantum proofs. For the former, we show quantum variants of the Karp-Lipton theorem and Toda's theorem. For the latter, we place its third level, \(\rm{Q\Sigma_3}\), into NEXP using the ellipsoid method for efficiently solving semidefinite programs. These results yield two implications for \(\rm{QMA(2)}\), the variant of Quantum Merlin-Arthur (\(\rm{QMA}\)) with two unentangled proofs, a complexity class whose characterization has proven difficult. First, if \(\rm{QCPH = QPH}\) (i.e., alternating quantifiers are sufficiently powerful so as to make classical and quantum proofs ``equivalent''), then QMA(2) is in the counting hierarchy (specifically, in \({\rm P}^{{\rm pp}^{{\rm pp}}}\)). Second, because \(\rm{QMA(2)}\subseteq \rm{Q\Sigma_3}\), \(\rm{QMA(2)}\) is strictly contained in NEXP unless \(\rm{QMA(2)}=\rm{Q\Sigma_3}\) (i.e., alternating quantifiers do not help in the presence of ``unentanglement'').

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 October 2022

    ``Missed-out author corrections updated in XML''.

References

  • S. Aaronson, S. Beigi, A. Drucker, B. Fefferman & P. Shor (2009). The Power of Unentanglement. Theory of Computing 5(1), 1–42.

  • S. Aaronson, A. Cojocaru, A. Gheorghiu & E. Kashefi (2019). Complexity-theoretic limitations on blind delegated quantum computation. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), C. Baier, I. Chatzigiannakis, P. Flocchini & S. Leonardi, editors, volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), 6:1–6:13. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.

  • S. Aaronson & A. Drucker (2014). A full characterization of quantum advice. SIAM Journal on Computing 43(3), 1131–1183.

  • D. Aharonov (2003). A simple proof that Toffoli and Hadamard are quantum universal. Available at arXiv:quant-ph/0301040v1.

  • D. Aharonov, M. Ben-Or, F. Brandão & O. Sattath (2022). The pursuit of uniqueness: Extending Valiant-Vazirani Theorem to the probabilistic and quantum Settings. Quantum 6, 668.

  • D. Aharonov, A. Kitaev & N. Nisan (1998). Quantum circuits with mixed states. In Proceedings of 13th ACM Symposium on Theory of Computing (STOC 1998), 20–30.

  • D. Aharonov & T. Naveh (2002). Quantum NP—A survey. Available at arXiv:quant-ph/0210077v1.

  • E. W. Allender & K. W. Wagner (1993). Counting hierarchies: Polynomial time and constant depth circuits. In Current Trends in Theoretical Computer Science, 469–483. World Scientific.

  • A. Ambainis (2014). On physical problems that are slightly more difficult than QMA. In Proceedings of 29th IEEE Conference on Computational Complexity (CCC 2014), 32–43.

  • S. Beigi (2010). NP vs QMA \(_{\rm log}(2)\). Quantum Information and Computation (QIC) 10(1–2), 141–151.

  • H. Blier & A. Tapp (2009). All languages in NP have very short quantum proofs. In Proceedings of the 3rd International Conference on Quantum, Nano and Micro Technologies, 34–37.

  • S. Boyd & L. Vandenberghe (2004). Convex Optimization. Cambridge University Press. ISBN 9780521833783.

  • C. M. Dawson & M. A. Nielsen (2006). The Solovay-Kitaev algorithm. Quantum Information and Computation (QIC) 6(1).

  • A. Deshpande, A. V. Gorshkov & B. Fefferman (2022). The importance of the spectral gap in estimating ground-state energies. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), M. Braverman, editor, volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), 54:1–54:6. Schloss Dagstuhl—Leibniz- Zentrum für Informatik, Dagstuhl, Germany.

  • S. Fenner, L. Fortnow, S. A. Kurtz & L. Li (2003). An oracle builder’s toolkit. Information and Computation 182(2), 95–136.

  • L. Fortnow (1994). The Role of Relativization in Complexity Theory. Bulletin of the European Association for Theoretical Computer Science 52, 52–229.

  • L. Fortnow & J. Rogers (1999). Complexity limitations on quantum computation. Journal of Computer and System Sciences 59(2), 240–252.

  • S. Gharibian & J. Kempe (2012). Hardness of approximation for quantum problems. In Automata, Languages, and Programming (ICALP 2012), A. Czumaj, K. Mehlhorn, A. Pitts & R. Wattenhofer, editors, 387–398. Springer, Berlin, Heidelberg.

  • S. Gharibian, M. Santha, J. Sikora, A. Sundaram & J. Yirka (2018). Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2). In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), I. Potapov, P. Spirakis & J. Worrell, editors, volume 117 of Leibniz International Proceedings in Informatics (LIPIcs), 58:1–58:16. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.

  • S. Gharibian & J. Yirka (2019). The complexity of simulating local measurements on quantum systems. Quantum 3, 189.

  • O. Goldreich (2006). On promise problems: A survey. In Theoretical Computer Science: Essays in Memory of Shimon Even, O. Goldreich, A.L. Rosenberg & A.L. Selman, editors, 254-290. Springer-Verlag, Berlin, Heidelberg.

  • A. B. Grilo, I. Kerenidis & J. Sikora (2016). QMA with subset state witnesses. Chicago Journal of Theoretical Computer Science 2016(4).

  • M. Grötschel, L. Lovász & A. Schrijver (1993). Geometric Algorithms and Combinatorial Optimization. Springer-Verlag. ISBN 9783642782404.

  • R. A. Horn & C. H. Johnson (1990). Matrix Analysis. Cambridge University Press. ISBN 9780521548236.

  • R. Jain & J. Watrous (2009). Parallel approximation of noninteractive zero-sum quantum games. In 24th Annual IEEE Conference on Computational Complexity (CCC), 243–253.

  • S. P. Jordan, H. Kobayashi, D. Nagaj & H. Nishimura (2012). Achieving perfect completeness in classical-witness quantum Merlin- Arthur proof systems. Quantum Information and Computation (QIC) 12(5–6), 461–471.

  • R. M. Karp & R. J. Lipton (1980). Some connections between nonuniform and uniform complexity classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing (STOC 1980), 302–309. ACM, New York, NY, USA.

  • A. Kitaev, A. Shen & M. Vyalyi (2002). Classical and Quantum Computation. American Mathematical Society. ISBN 082182161X.

  • A. Kitaev & J. Watrous (2000). Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC 2000), 608–617.

  • H. Kobayashi, F. le Gall & H. Nishimura (2015). Stronger methods of making quantum interactive proofs perfectly complete. SIAM Journal on Computing 44(2), 243–289.

  • Y.-K. Liu, M. Christandl & F. Verstraete (2007). Quantum Computational complexity of the N-representability problem: QMA complete. Phys. Rev. Lett. 98, 110 503.

  • J. Lockhart & C. E. González-Guillén (2017). Quantum state isomorphism. Available at arXiv:1709.09622v1 [quant-ph].

  • C. Lund, L. Fortnow, H. Karloff & N. Nisan (1992). Algebraic methods for interactive proof systems. Journal of the ACM 39(4), 859–868.

  • C. Marriott & J. Watrous (2005). Quantum Arthur-Merlin games. Computational Complexity 14(2), 122–152.

  • A. Meyer & L. Stockmeyer (1972). The equivalence problem for regular expressions with squaring requires exponential space. In 13th Annual Symposium on Switching and Automata Theory, 125–129.

  • A. Molina & J. Watrous (2019). Revisiting the simulation of quantum Turing machines by quantum circuits. Proceedings of the Royal Society A 475(2226), 20180 767.

  • J. von Neumann (1928). Zur Theorie der Gesellschaftspiele. Mathematische Annalen 100(1), 295–320.

  • A. Pereszlényi (2012). Multi-prover quantum Merlin-Arthur proof systems with small gap. Available at arXiv:1205.2761v1 [quant-ph].

  • Y. Shi (2003). Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Information and Computation 3(1), 84–92.

  • S. Toda (1991). PP is as hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing 20, 865–877.

  • J. Torán (1991). Complexity classes defined by counting quantifiers. Journal of the ACM 38(3), 752-773.

  • L. G. Valiant & V. V. Vazirani (1986). NP is as easy as detecting unique solutions. Theoretical Computer Science 47, 85–93.

  • L. Vinkhuijzen (2018). A quantum polynomial hierarchy and a simple proof of Vyalyi’s Theorem. Master’s thesis, Leiden University.

  • N. V. Vinodchandran (2005). A note on the circuit complexity of PP. Theoretical Computer Science 347(1-2), 415–418.

  • M. Vyalyi (2003). QMA=PP implies that PP contains PH. Technical Report TR03-021, Electronic Colloquium on Computational Complexity.

  • J. Watrous (2009a). Quantum computational complexity. In Encyclopedia of Complexity and Systems Science, R. A. Meyers, editor, 7174–7201. Springer, New York, NY.

  • J. Watrous (2009b). Semidefinite programs for completely bounded norms. Theory of Computation 5, 217–238.

  • J. Watrous (2009c). Zero-knowledge against quantum attacks. SIAM Journal of Computing 39(1), 25–58.

  • C. Wrathall (1976). Complete sets and the Polynomial-Time Hierarchy. Theoretical Computer Science 3(1), 23 – 33.

  • T. Yamakami (2002). Quantum NP and a quantum hierarchy. In Foundations of Information Technology in the Era of Network and Mobile Computing (TCS 2002), R. Baeza-Yates, U. Montanari & N. Santoro, editors, 323–336. Springer, Boston, MA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Yirka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharibian, S., Santha, M., Sikora, J. et al. Quantum generalizations of the polynomial hierarchy with applications to QMA(2). comput. complex. 31, 13 (2022). https://doi.org/10.1007/s00037-022-00231-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00037-022-00231-8

Keywords

Subject classification

Navigation