Direct Position Determination of Multiple Constant Modulus Sources Based on Direction of Arrival and Doppler Frequency Shift | Circuits, Systems, and Signal Processing Skip to main content

Advertisement

Log in

Direct Position Determination of Multiple Constant Modulus Sources Based on Direction of Arrival and Doppler Frequency Shift

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Direct position determination (DPD) methods are known to outperform classical two-step localization methods under the condition of low signal-to-noise ratios and/or small number of snapshots. Additionally, they can directly exploit the prior knowledge of signal waveforms to achieve higher estimation accuracy. In this paper, we concentrate on the DPD method for locating multiple constant modulus (CM) sources based on a single moving receiving station. Both direction of arrival and Doppler frequency shift are used for source localization. First, a received array signal model with a small time delay that can incorporate the Doppler frequency information is formed. Subsequently, the corresponding maximum likelihood estimation criterion is established. An effective alternating minimization algorithm is developed to solve the optimization problem. Subsequently, we also derive the Cramér–Rao bound expressions for parameter estimation. It is proved that the CM property of the signals is useful in reducing the lower bound for location estimation. Simulation results demonstrate that the proposed method is asymptotically efficient. Moreover, it is also shown that the estimation accuracy of direct localization can be greatly increased if the CM characteristics of the radiated signals are adequately exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Amar, A.J. Weiss, A decoupled algorithm for geolocation of multiple emitters. Sig. Process. 87(10), 2348–2359 (2007)

    MATH  Google Scholar 

  2. A. Amar, A.J. Weiss, Localization of narrowband radio emitters based on Doppler frequency shifts. IEEE Trans. Signal Process. 56(11), 5500–5508 (2008)

    MathSciNet  MATH  Google Scholar 

  3. O. Bar-Shalom, A.J. Weiss, Efficient direct position determination of orthogonal frequency division multiplexing signals. IET Radar Sonar Navig. 3(2), 101–111 (2009)

    Google Scholar 

  4. O. Bar-Shalom, A.J. Weiss, Emitter geolocation using single moving receiver. Sig. Process. 94(12), 70–83 (2014)

    Google Scholar 

  5. Q.M. Bao, C.C. Ko, W.J. Zhi, DOA estimation under unknown mutual coupling and multipath. IEEE Trans. Aerosp. Electron. Syst. 41(2), 565–573 (2005)

    Google Scholar 

  6. J. Caffery, G. Stuber, Subscriber location in CDMA cellular networks. IEEE Trans. Veh. Technol. 47(2), 406–416 (1998)

    Google Scholar 

  7. K.W. Cheung, H.C. So, Y.T. Chan, Least squares algorithms for time-of-arrival-based mobile location. IEEE Trans. Signal Process. 52(4), 1121–1128 (2004)

    MathSciNet  MATH  Google Scholar 

  8. B. Demissie, M. Oispuu, E. Ruthotto, Localization of multiple sources with a moving array using subspace data fusion, in Proceedings of the 2008 IEEE International Conference on Information Fusion, pp. 1-7, Jun (2008)

  9. B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Transactions Antennas and Propagation. 39(3), 273–284 (1991)

    Google Scholar 

  10. S. Gogineni, A. Nehorai, Target estimation using sparse modeling for distributed MIMO radar. IEEE Trans. Signal Process. 59(11), 5315–5325 (2011)

    MathSciNet  MATH  Google Scholar 

  11. K.C. Ho, X. Lu, L. Kovavisaruch, Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans. Signal Process. 55(2), 684–696 (2007)

    MathSciNet  MATH  Google Scholar 

  12. K.C. Ho, Y.T. Chan, An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis. IEEE Trans. Signal Process. 54(3), 809–822 (2006)

    MATH  Google Scholar 

  13. K.C. Ho, M. Sun, An accurate algebraic closed-form solution for energy-based source localization. IEEE Trans. Audio Speech Lang. Process. 15(8), 2542–2550 (2007)

    Google Scholar 

  14. K.C. Ho, M. Sun, Passive source localization using time differences of arrival and gain ratios of arrival. IEEE Trans. Signal Process. 56(2), 464–477 (2008)

    MathSciNet  MATH  Google Scholar 

  15. R.A. Horn, C.R. Johnson, Matrix analysis (Cambridge University Press, New York, 1985)

    MATH  Google Scholar 

  16. W. Jiang, C. Xu, L. Pei, W. Yu, Multidimensional scaling-based TDOA localization scheme using an auxiliary line. IEEE Signal Process. Lett. 23(4), 546–550 (2016)

    Google Scholar 

  17. D. Kutluyil, Bearings-only target localization using total least squares. Sig. Process. 85(9), 1695–1710 (2005)

    MATH  Google Scholar 

  18. S. Li, B.L.F. Daku, Optimal amplitude weighting for near-field passive source localization. IEEE Trans. Signal Process. 59(12), 6175–6185 (2011)

    MathSciNet  MATH  Google Scholar 

  19. C. Liu, Y.V. Zakharov, T. Chen, Broadband underwater localization of multiple sources using basis pursuit de-noising. IEEE Trans. Signal Process. 60(4), 1708–1717 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Z. Lin, T. Han, R. Zheng, M. Fu, Distributed localization for 2-D sensor networks with bearing-only measurements under switching topologies. IEEE Trans. Signal Process. 64(23), 6345–6359 (2016)

    MathSciNet  MATH  Google Scholar 

  21. J.Z. Li, L. Yang, F.C. Guo, W.L. Jiang, Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler. Digit. Signal Proc. 48(1), 58–70 (2016)

    MathSciNet  Google Scholar 

  22. B. Maričić, Z.Q. Luo, T.N. Davidson, Blind constant modulus equalization via convex optimization. IEEE Trans. Signal Process. 51(3), 805–818 (2003)

    MathSciNet  MATH  Google Scholar 

  23. M. Oispuu, U. Nickel, Direct detection and position determination of multiple sources with intermittent emission. Sig. Process. 90(12), 3056–3064 (2010)

    MATH  Google Scholar 

  24. M. Pourhomayoun, M.L. Fowler, Distributed computation for direct position determination emitter location. IEEE Trans. Aerosp. Electron. Syst. 50(4), 2878–2889 (2014)

    Google Scholar 

  25. G.W. Pulford, Analysis of a nonlinear least square procedure used in global positioning systems. IEEE Trans. Signal Process. 58(9), 4526–4534 (2010)

    MathSciNet  MATH  Google Scholar 

  26. M. Pesavento, A.B. Gershman, K.M. Wong, Direction finding in partly-calibrated sensor arrays composed of multiple subarrays. IEEE Trans. Signal Process. 55(9), 2103–2115 (2002)

    Google Scholar 

  27. A.M. Reuven, A.J. Weiss, Direct position determination of cyclostationary signals. Sig. Process. 89(12), 2448–2464 (2009)

    MATH  Google Scholar 

  28. Y. Shen, M.Z. Win, Fundamental limits of wideband localization-Part I: a general framework. IEEE Trans. Inf. Theory 56(10), 4956–4980 (2010)

    MathSciNet  MATH  Google Scholar 

  29. H. Shen, Z. Ding, S. Dasgupta, C. Zhao, Multiple source localization in wireless sensor networks based on time of arrival measurement. IEEE Trans. Signal Process. 62(8), 1938–1949 (2014)

    MathSciNet  MATH  Google Scholar 

  30. P. Stoica, On reparametrization of loss functions used in estimation and the invariance principle. Sig. Process. 17(4), 383–387 (1989)

    MathSciNet  Google Scholar 

  31. P. Stoica, O. Besson, Maximum likelihood DOA estimation for constant-modulus signal. Electron. Lett. 36(9), 849–851 (2000)

    Google Scholar 

  32. P. Stoica, E.G. Larsson, Comments on “Linearization method for finding Cramér-Rao bounds in signal processing”. IEEE Trans. Signal Process. 49(12), 3168–3169 (2001)

    Google Scholar 

  33. N. Suzuki, K. Hirata, T. Wakayama, A fast calculation method of 2-dimensional MUSIC for simultaneous estimation of DOA and frequency, in Proceedings of the 2014 IEEE Symposium on Antennas and Propagation, pp. 23–24, (2014)

  34. E. Tzoreff, A.J. Weiss, Expectation-maximization algorithm for direct position determination. Sig. Process. 97(4), 32–39 (2017)

    Google Scholar 

  35. T. Tirer, A.J. Weiss, High resolution direct position determination of radio frequency sources. IEEE Signal Process. Lett. 23(2), 192–196 (2016)

    Google Scholar 

  36. L. Tzafri, A.J. Weiss, High-resolution direct position determination using MVDR. IEEE Transactions on Wireless Communication. 15(9), 6449–6461 (2016)

    Google Scholar 

  37. T. Tirer, A.J. Weiss, Performance analysis of a high-resolution direct position determination method. IEEE Trans. Signal Process. 65(3), 544–554 (2017)

    MathSciNet  MATH  Google Scholar 

  38. N. Vankayalapati, S. Kay, Q. Ding, TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound. IEEE Trans. Aerosp. Electron. Syst. 50(3), 1616–1634 (2014)

    Google Scholar 

  39. A.J. van der Veen, A. Paulraj, An analytical constant modulus algorithm. IEEE Trans. Signal Process. 44(5), 1136–1155 (1996)

    Google Scholar 

  40. M. Viberg, B. Ottersten, Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 39(5), 1110–1121 (1991)

    MATH  Google Scholar 

  41. G. Wang, Y. Li, N. Ansari, A semidefinite relaxation method for source localization using TDOA and FDOA measurements. IEEE Trans. Veh. Technol. 62(2), 853–862 (2013)

    Google Scholar 

  42. M. Wax, T. Kailath, Decentralized processing in sensor arrays. IEEE Trans. Signal Process. 33(4), 1123–1129 (1985)

    Google Scholar 

  43. D. Wang, J.X. Yin, R.R. Liu, H.Y. Yu, Y.L. Wang, Performance analysis and improvement of direct position determination based on Doppler frequency shifts in presence of model errors: case of known waveforms. Multidimension. Syst. Signal Process. 30(2), 749–790 (2019)

    MathSciNet  MATH  Google Scholar 

  44. D. Wang, Calibration algorithm for multiplicative modeling errors using constant modulus auxiliary signals. IET Signal Proc. 9(4), 297–311 (2015)

    Google Scholar 

  45. A.J. Weiss, Direct geolocation of wideband emitters based on delay and Doppler. IEEE Trans. Signal Process. 59(6), 2513–5520 (2011)

    MathSciNet  MATH  Google Scholar 

  46. A.J. Weiss, A. Amar, Direct position determination of multiple radio signals. EURASIP J. Appl. Sig. Process. 2005(1), 37–49 (2005)

    MATH  Google Scholar 

  47. A.J. Weiss, Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process. Lett. 11(5), 513–516 (2004)

    Google Scholar 

  48. F. Wen, Q. Wan, R. Fan, H.W. Wei, Improved MUSIC algorithm for multiple noncoherent subarrays. IEEE Signal Process. Lett. 21(5), 527–530 (2014)

    Google Scholar 

  49. F. Wen, P.L. Liu, H.C. Wei, Y. Zhang, R.C. Qiu, Joint azimuth, elevation, and delay estimation for 3D indoor localization. IEEE Trans. Veh. Technol. 67(5), 4248–4261 (2018)

    Google Scholar 

  50. W. Xia, W. Liu, L.F. Zhu, Distributed adaptive direct position determination based on diffusion framework. J. Syst. Eng. Electron. 27(1), 28–38 (2016)

    Google Scholar 

  51. W. Xie, F. Wen, J.B. Liu, Q. Wan, Source association, DOA and fading coefficients estimation for multiple signals. IEEE Trans. Signal Process. 65(11), 2773–2786 (2017)

    MathSciNet  MATH  Google Scholar 

  52. L. Yang, K.C. Ho, An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions. IEEE Trans. Signal Process. 57(12), 4598–4615 (2009)

    MathSciNet  MATH  Google Scholar 

  53. J.X. Yin, D. Wang, Y. Wu, R.R. Liu, Direct localization of multiple stationary narrowband sources based on angle and Doppler. IEEE Commun. Lett. 21(12), 2630–2633 (2017)

    Google Scholar 

  54. J.X. Yin, Y. Wu, D. Wang, Direct position determination of multiple noncircular sources with a moving array. Circuits, Syst. Signal Process. 36(10), 4050–4076 (2017)

    MATH  Google Scholar 

  55. J.X. Yin, D. Wang, Y. Wu, X.W. Yao, ML-based single-step estimation of the locations of strictly noncircular sources. Digit. Signal Proc. 69(10), 224–236 (2017)

    Google Scholar 

  56. X. Zhang, D. Wang, D. Xu, Novel blind joint direction of arrival and frequency estimation for uniform linear array. Progress Electromag. Res. 86, 199–215 (2008)

    Google Scholar 

  57. J. Zheng, Y.C. Wu, Joint time synchronization and localization of an unknown node in wireless sensor networks. IEEE Trans. Signal Process. 58(3), 1309–1320 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from National Natural Science Foundation of China (Grant Nos. 61201381, 61401513 and 61772548); China Postdoctoral Science Foundation (Grant No. 2016M592989); Key Scientific and Technological Research Project in Henan Province (Grant No. 192102210092); the Self-Topic Foundation of Information Engineering University (Grant No. 2016600701); and the Outstanding Youth Foundation of Information Engineering University (Grant No. 2016603201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-xin Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Detailed Derivation of (18)–(22)

The first-order derivative of the orthogonal projection matrix \( {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )] \) with respect to \( < {\mathbf{p}} >_{j} \) is given by [26, 40]:

$$ \begin{aligned}\frac{{\partial {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]}}{{\partial < {\mathbf{p}} >_{j} }} &= - {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial {\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{j} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag }\\ & - \left( {{\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial {\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{j} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } } \right)^{\text{T}}\end{aligned} $$
(63)

Using (63), the \( j \)th element of the gradient can be written as:

$$ \begin{aligned} \left\langle {{\mathbf{g}}_{ 1} ({\mathbf{p}})} \right\rangle_{j} & = \frac{{\partial J_{ 4} ({\mathbf{p}})}}{{\partial < {\mathbf{p}} >_{j} }} = - 2\sum\limits_{k = 1}^{K} {{\boldsymbol{\tilde{\bar{x}}}}_{k}^{\text{T}} {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial {\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{j} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } {\boldsymbol{\tilde{\bar{x}}}}_{k} } \\ & = 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {{\mathbf{y}}_{k}^{\text{T}} ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} \frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{j} }}{\mathbf{y}}_{k} } } \right\} - 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {{\bar{\mathbf{x}}}_{k}^{\text{H}} \frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{j} }}{\mathbf{y}}_{k} } } \right\} \\ \end{aligned} $$
(64)

Inserting the third equality in (12) into (64) yields

$$ \begin{aligned} \left\langle {{\mathbf{g}}_{ 1} ({\mathbf{p}})} \right\rangle_{j} = & 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} - {\bar{\mathbf{x}}}_{k} (t_{l} ))^{\text{H}} \frac{{\partial {\mathbf{B}}_{k} ({\mathbf{p}})}}{{\partial < {\mathbf{p}} >_{j} }}{\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} } } } \right\} \\ & \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} - {\bar{\mathbf{x}}}_{k} (t_{l} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{j} }}} } } \right\} \\ \end{aligned} $$
(65)

which combined with the matrix identity (III) in Table 2 leads to

$$ \begin{aligned} \left\langle {{\mathbf{g}}_{ 1} ({\mathbf{p}})} \right\rangle_{j} = & 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\left( {\sum\limits_{l = 1}^{L} {({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{ * } \otimes ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} - {\bar{\mathbf{x}}}_{k} (t_{l} ))} } \right)^{\text{H}} \frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{j} }}} } \right\} \\ & \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} - {\bar{\mathbf{x}}}_{k} (t_{l} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{j} }}} } } \right\} \\ \end{aligned} $$
(66)

By performing direct algebraic manipulation, the compact expression of gradient \( {\mathbf{g}}_{ 1} ({\mathbf{p}}) \) follows.

The second-order derivative of the orthogonal projection matrix \( {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )] \) can be written as [26, 40]:

$$ \frac{{\partial^{2} {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]}}{{\partial < {\mathbf{p}} >_{{j_{1} }} \partial < {\mathbf{p}} >_{{j_{2} }} }} = {\mathbf{Z}}_{k} + {\mathbf{Z}}_{k}^{\text{T}} $$
(67)

where

$$ \begin{aligned} {\mathbf{Z}}_{k} &= {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } \frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } \\ & \quad + ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{{{\dag }{\kern 1pt} {\kern 1pt} {\text{T}}}} \frac{{\partial {\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } \\ & \quad - {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial^{2} ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} \partial < {\mathbf{p}} >_{{j_{2} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } \\ & \quad - {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{{{\dag }{\kern 1pt} {\kern 1pt} {\text{T}}}} \frac{{\partial {\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )] \\ & \quad + {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } \frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } \\ \end{aligned} $$
(68)

Under moderate noise level, we can ignore the terms involving \( {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]{\boldsymbol{\tilde{\bar{x}}}}_{k} \) and \( {\boldsymbol{\tilde{\bar{x}}}}_{k}^{\text{T}} {\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )] \). Then, the \( j_{1} \)\( j_{2} \)th element of the Hessian can be approximated as

$$ \begin{aligned} \left\langle {{\mathbf{G}}_{1} ({\mathbf{p}})} \right\rangle_{{j_{1} j_{2} }} & = \frac{{\partial^{2} J_{4} ({\mathbf{p}})}}{{\partial < {\mathbf{p}} >_{{j_{1} }} \partial < {\mathbf{p}} >_{{j_{2} }} }} \approx 2\sum\limits_{k = 1}^{K} {{\tilde{\mathbf{x}}}_{k}^{\text{T}} ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{{{\dag }{\kern 1pt} {\kern 1pt} {\text{T}}}} \frac{{\partial ({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{T}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}{\varvec{\Pi}}^{ \bot } [{\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )]\frac{{\partial {\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}({\tilde{\mathbf{H}}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\dag } {\tilde{\mathbf{x}}}_{k} } \\ & = 2\sum\limits_{k = 1}^{K} {\text{Re} \left\{ {{\mathbf{y}}_{k}^{\text{T}} \frac{{\partial ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}\frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{y}}_{k} } \right\}} \\ & \quad - 2\sum\limits_{k = 1}^{K} {\sum\limits_{d = 1}^{D} {\text{Re} \left\{ {({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ){\mathbf{h}}_{kd} )^{\text{H}} \frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}{\mathbf{y}}_{k} } \right\}\text{Re} \left\{ {{\mathbf{y}}_{k}^{\text{T}} \frac{{\partial ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ){\mathbf{h}}_{kd} } \right\}} } \\ \end{aligned} $$
(69)

From the third equality in (12) we have

$$ \begin{aligned} & 2\sum\limits_{k = 1}^{K} {\text{Re} \left\{ {{\mathbf{y}}_{k}^{\text{T}} \frac{{\partial ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}\frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{y}}_{k} } \right\}} \\ & \quad = 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{\text{H}} \frac{{\partial ({\mathbf{B}}_{k} ({\mathbf{p}}))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}\frac{{\partial {\mathbf{B}}_{k} ({\mathbf{p}})}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} } } } \right\} \\ & \quad \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{\text{H}} \frac{{\partial ({\mathbf{B}}_{k} ({\mathbf{p}}))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}{\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}} } } \right\} \\ & \quad \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {\frac{{\partial ({\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} )^{\text{H}} \frac{{\partial {\mathbf{B}}_{k} ({\mathbf{p}})}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} } } } \right\} \\ & \quad \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {\frac{{\partial ({\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} )^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}} } } \right\} \\ \end{aligned} $$
(70)

which combined with the matrix identity (III) in Table 2 yields

$$ \begin{aligned} & 2\sum\limits_{k = 1}^{K} {\text{Re} \left\{ {{\mathbf{y}}_{k}^{\text{T}} \frac{{\partial ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}\frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{y}}_{k} } \right\}} \\ & \quad = 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\left( {\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}} \right)^{\text{H}} \left( {\left( {\sum\limits_{l = 1}^{L} {({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{ * } ({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{\text{T}} } } \right) \otimes {\mathbf{I}}_{(N + 1)M} } \right)\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}} } \right\} \\ & \quad \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\left( {\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}} \right)^{\text{H}} \left( {\sum\limits_{l = 1}^{L} {(({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{ * } \otimes {\mathbf{I}}_{(N + 1)M} ){\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}} } \right)} } \right\} \\ & \quad \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\left( {\sum\limits_{l = 1}^{L} {\frac{{\partial ({\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} )^{\text{H}} (({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{\text{T}} \otimes {\mathbf{I}}_{(N + 1)M} )} } \right)\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}} } \right\} \\ & \quad \quad + 2\text{Re} \left\{ {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{L} {\frac{{\partial ({\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} )^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}} } } \right\} \\ \end{aligned} $$
(71)

Moreover, using the third equality in (12) leads to

$$ \begin{aligned} & 2\sum\limits_{k = 1}^{K} {\sum\limits_{d = 1}^{D} {\text{Re} \left\{ {({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ){\mathbf{h}}_{kd} )^{\text{H}} \frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}{\mathbf{y}}_{k} } \right\}\text{Re} \left\{ {{\mathbf{y}}_{k}^{\text{T}} \frac{{\partial ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ){\mathbf{h}}_{kd} } \right\}} } \\ & \quad = 2\sum\limits_{k = 1}^{K} {\sum\limits_{d = 1}^{D} {\left( \begin{aligned} \text{Re} \left\{ {\sum\limits_{l = 1}^{L} {\left( \begin{aligned} ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} )^{\text{H}} \frac{{\partial {\mathbf{B}}_{k} ({\mathbf{p}})}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}{\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} \\ + ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} )^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }} \\ \end{aligned} \right)} } \right\} \\ \times \text{Re} \left\{ {\sum\limits_{l = 1}^{L} {\left( \begin{aligned} ({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{\text{H}} \frac{{\partial ({\mathbf{B}}_{k} ({\mathbf{p}}))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} \\ + \frac{{\partial ({\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} )^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} \\ \end{aligned} \right)} } \right\} \\ \end{aligned} \right)} } \\ \end{aligned} $$
(72)

which combined with the matrix identity (III) in Table 2 produces

$$ \begin{aligned} & 2\sum\limits_{k = 1}^{K} {\sum\limits_{d = 1}^{D} {\text{Re} \left\{ {({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ){\mathbf{h}}_{kd} )^{\text{H}} \frac{{\partial {\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} )}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }}{\mathbf{y}}_{k} } \right\}\text{Re} \left\{ {{\mathbf{y}}_{k}^{\text{T}} \frac{{\partial ({\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ))^{\text{H}} }}{{\partial < {\mathbf{p}} >_{{j_{2} }} }}{\mathbf{H}}_{k} ({\mathbf{p}},{\hat{\boldsymbol{\varphi }}}_{k} ){\mathbf{h}}_{kd} } \right\}} } \\ & \quad = 2\sum\limits_{k = 1}^{K} {\sum\limits_{d = 1}^{D} {\left( \begin{aligned} \text{Re} \left\{ {\sum\limits_{l = 1}^{L} {\left( \begin{aligned} (({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{ * } \otimes ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} ))^{\text{H}} \frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }} \\ +\, ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} )^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{1} }} }} \\ \end{aligned} \right)} } \right\} \hfill \\ \times \text{Re} \left\{ {\sum\limits_{l = 1}^{L} {\left( \begin{aligned} (({\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{y}}_{k} )^{ * } \otimes ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} ))^{\text{H}} \frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }} \\ +\, ({\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ){\mathbf{h}}_{kd} )^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\hat{\mathbf{S}}}_{k} (t_{l} ){\mathbf{Y}}_{k} \frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial < {\mathbf{p}} >_{{j_{2} }} }} \\ \end{aligned} \right)} } \right\} \hfill \\ \end{aligned} \right)} } \\ \end{aligned} $$
(73)

Combining (69), (71), and (73), we can obtain the compact expression of Hessian \( {\mathbf{G}}_{ 1} ({\mathbf{p}}) \).

Appendix 2: Detailed Expressions for \( \frac{{\partial {\mathbf{vec}}({\mathbf{B}}_{{\mathbf{k}}} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{{\mathbf{T}}} }} \) and \( \frac{{\partial {\mathbf{r}}_{{\mathbf{k}}} ({\mathbf{p}},{\mathbf{t}})}}{{\partial {\mathbf{p}}^{{\mathbf{T}}} }} \)

It follows from the second equality in (5) that

$$ \frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }} = {\text{blkdiag}}\left[ {\frac{{\partial {\mathbf{b}}_{k} ({\mathbf{p}}_{1} )}}{{\partial {\mathbf{p}}_{1}^{\text{T}} }}\frac{{\partial {\mathbf{b}}_{k} ({\mathbf{p}}_{2} )}}{{\partial {\mathbf{p}}_{2}^{\text{T}} }} \cdots \frac{{\partial {\mathbf{b}}_{k} ({\mathbf{p}}_{D} )}}{{\partial {\mathbf{p}}_{D}^{\text{T}} }}} \right] $$
(74)

where

$$ \frac{{\partial {\mathbf{b}}_{k} ({\mathbf{p}}_{d} )}}{{\partial {\mathbf{p}}_{d}^{\text{T}} }} = {\mathbf{c}}_{k} ({\mathbf{p}}_{d} ) \otimes \frac{{\partial {\mathbf{a}}_{k} ({\mathbf{p}}_{d} )}}{{\partial {\mathbf{p}}_{d}^{\text{T}} }} + ({\mathbf{I}}_{N + 1} \otimes {\mathbf{a}}_{k} ({\mathbf{p}}_{d} ))\frac{{\partial {\mathbf{c}}_{k} ({\mathbf{p}}_{d} )}}{{\partial {\mathbf{p}}_{d}^{\text{T}} }} $$
(75)

Using (6), we have

$$ \begin{aligned} \frac{{\partial {\mathbf{c}}_{k} ({\mathbf{p}}_{d} )}}{{\partial {\mathbf{p}}_{d}^{\text{T}} }} &= ( - {\text{j}}2\pi )[0\;\tau_{1} \exp \{ - {\text{j}}2\pi f_{k} ({\mathbf{p}}_{d} )\tau_{1} \}\;\tau_{2} \exp \{ - {\text{j}}2\pi f_{k} ({\mathbf{p}}_{d} )\tau_{2} \} \\&\quad \cdots \tau_{N} \exp \{ - {\text{j}}2\pi f_{k} ({\mathbf{p}}_{d} )\tau_{N} \} ]^{\text{T}} \frac{{\partial f_{k} ({\mathbf{p}}_{d} )}}{{\partial {\mathbf{p}}_{d}^{\text{T}} }} \end{aligned}$$
(76)

where

$$ \frac{{\partial f_{k} ({\mathbf{p}}_{d} )}}{{\partial {\mathbf{p}}_{d}^{\text{T}} }} = \frac{{f_{\text{c}} }}{c}\left( {\frac{{{\mathbf{q}}_{k2}^{\text{T}} }}{{||{\mathbf{p}}_{d} - {\mathbf{q}}_{k1} ||_{2} }} - \frac{{{\mathbf{q}}_{k2}^{\text{T}} ({\mathbf{p}}_{d} - {\mathbf{q}}_{k1} )({\mathbf{p}}_{d} - {\mathbf{q}}_{k1} )^{\text{T}} }}{{||{\mathbf{p}}_{d} - {\mathbf{q}}_{k1} ||_{2}^{3} }}} \right) = \frac{{f_{\text{c}} }}{c}\left( {\left( {\frac{{||{\mathbf{p}}_{d} - {\mathbf{q}}_{k1} ||_{2}^{2} {\mathbf{I}}_{{\dim \{ {\mathbf{p}}_{d} \} }} - ({\mathbf{p}}_{d} - {\mathbf{q}}_{k1} )({\mathbf{p}}_{d} - {\mathbf{q}}_{k1} )^{\text{T}} }}{{||{\mathbf{p}}_{d} - {\mathbf{q}}_{k1} ||_{2}^{3} }}} \right){\mathbf{q}}_{k2} } \right)^{\text{T}} $$
(77)

Moreover, it can be checked from the expression of \( {\mathbf{r}}_{k} ({\mathbf{p}},t) \) that

$$ \begin{aligned}\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t)}}{{\partial {\mathbf{p}}^{\text{T}} }} & = ({\text{j}}2\pi t){\text{diag}}[\exp \{ {\text{j}}2\pi f_{k} ({\mathbf{p}}_{1} )t\}\;\exp \{ {\text{j}}2\pi f_{k} ({\mathbf{p}}_{2} )t\} \\ &\quad \cdots \exp \{ {\text{j}}2\pi f_{k} ({\mathbf{p}}_{D} )t]{\text{blkdiag}}\left[ {\frac{{\partial f_{k} ({\mathbf{p}}_{1} )}}{{\partial {\mathbf{p}}_{ 1}^{\text{T}} }}\frac{{\partial f_{k} ({\mathbf{p}}_{2} )}}{{\partial {\mathbf{p}}_{ 2}^{\text{T}} }} \cdots \frac{{\partial f_{k} ({\mathbf{p}}_{D} )}}{{\partial {\mathbf{p}}_{D}^{\text{T}} }}} \right] \end{aligned} $$
(78)

Appendix 3: Detailed Derivation of (25)

Applying a first-order Taylor series expansion of \( {\mathbf{e}}_{kl} ({\boldsymbol{\varphi }}_{k} (t_{l} )) \) around \( {\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ) \) produces

$$ {\mathbf{e}}_{kl} ({\boldsymbol{\varphi }}_{k} (t_{l} )) \approx {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )) + {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))({\boldsymbol{\varphi }}_{k} (t_{l} ) - {\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )) $$
(79)

Then, the cost function \( J_{5,kl} ({\boldsymbol{\varphi }}_{k} (t_{l} )) \) can be approximately expressed as:

$$ \begin{aligned} J_{5,kl} ({\boldsymbol{\varphi }}_{k} (t_{l} )) & \approx ||{\bar{\mathbf{x}}}_{k} (t_{l} ) - {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )) - {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))({\boldsymbol{\varphi }}_{k} (t_{l} ) - {\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))||_{2}^{2} \\ & = \left\| {\left[ {\begin{array}{*{20}c} {{\text{Re}}\{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} } \\ \hline {\text{Im} \{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} } \\ \end{array} } \right]({\boldsymbol{\varphi }}_{k} (t_{l} ) - {\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )) - \left[ {\begin{array}{*{20}c} {{\text{Re}}\{ {\bar{\mathbf{x}}}_{k} (t_{l} ) - {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} } \\ \hline {\text{Im} \{ {\bar{\mathbf{x}}}_{k} (t_{l} ) - {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} } \\ \end{array} } \right]} \right\|_{2}^{2} \\ \end{aligned} $$
(80)

It follows from (80) that in the \( i + 1 \)th iteration, the optimum vector \( {\boldsymbol{\varphi }}_{k} (t_{l} ) \) that minimizes \( J_{5,kl} ({\boldsymbol{\varphi }}_{k} (t_{l} )) \) is given by:

$$ \begin{aligned} {\hat{\boldsymbol{\varphi }}}_{k}^{(i + 1)} (t_{l} ) & = {\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ) + (({\text{Re}}\{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} )^{\text{T}} {\text{Re}}\{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} + (\text{Im} \{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} )^{\text{T}} \text{Im} \{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} )^{ - 1} \\ & \quad \times (({\text{Re}}\{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} )^{\text{T}} {\text{Re}}\{ {\bar{\mathbf{x}}}_{k} (t_{l} ) - {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} + (\text{Im} \{ {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} )^{\text{T}} \text{Im} \{ {\bar{\mathbf{x}}}_{k} (t_{l} ) - {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} ) \\ & = {\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ) + (\text{Re} \{ ({\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )))^{\text{H}} {\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} ))\} )^{ - 1} \text{Re} \{ ({\mathbf{E}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )))^{\text{H}} ({\bar{\mathbf{x}}}_{k} (t_{l} ) - {\mathbf{e}}_{kl} ({\hat{\boldsymbol{\varphi }}}_{k}^{(i)} (t_{l} )))\} \\ \end{aligned} $$
(81)

Additionally, in order to improve the stability of the Gauss–Newton iteration, it is necessary to introduce a step length in (81). As a result, we get (25).

Appendix 4: Complexity of the Proposed Method

Table 6 shows the numerical complexity of the proposed algorithm, expressed in the number of multiplication operations.

Table 6 Complexity of the proposed method

Appendix 5: Detailed Expressions for \( {\mathbf{F}}_{{\varvec{\upbeta}}}^{{\mathbf{H}}} {\mathbf{F}}_{{\varvec{\upbeta}}} \), \( {\mathbf{F}}_{{\varvec{\upbeta}}}^{{\mathbf{H}}} {\mathbf{F}}_{{{\mathbf{Re}}\{ {\mathbf{s}}\} }} \), \( {\mathbf{F}}_{{{\mathbf{Re}}\{ {\mathbf{s}}\} }}^{{\mathbf{H}}} {\mathbf{F}}_{{{\mathbf{Re}}\{ {\mathbf{s}}\} }} \), \( {\mathbf{F}}_{{\varvec{\upbeta}}}^{{\mathbf{H}}} {\mathbf{F}}_{{\mathbf{p}}} \), \( {\mathbf{F}}_{{{\mathbf{Re}}\{ {\mathbf{s}}\} }}^{{\mathbf{H}}} {\mathbf{F}}_{{\mathbf{p}}} \), and \( {\mathbf{F}}_{{\mathbf{p}}}^{{\mathbf{H}}} {\mathbf{F}}_{{\mathbf{p}}} \)

Performing some algebraic manipulations and using (32) and (33), we have

$$ {\mathbf{F}}_{{\varvec{\upbeta}}}^{\text{H}} {\mathbf{F}}_{{\varvec{\upbeta}}} = {\text{blkdiag[}}{\mathbf{F}}_{{{\varvec{\upbeta}},1}}^{\text{H}} {\mathbf{F}}_{{{\varvec{\upbeta}},1}}\;{\mathbf{F}}_{{{\varvec{\upbeta}}, 2}}^{\text{H}} {\mathbf{F}}_{{{\varvec{\upbeta}}, 2}} \cdots {\mathbf{F}}_{{{\varvec{\upbeta}},K}}^{\text{H}} {\mathbf{F}}_{{{\varvec{\upbeta}},K}} ] $$
(82)
$$ {\mathbf{F}}_{{\varvec{\upbeta}}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} }} = {\text{blkdiag[}}{\mathbf{F}}_{{{\varvec{\upbeta}},1}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,1}}\;{\mathbf{F}}_{{{\varvec{\upbeta}}, 2}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} , 2}} \cdots {\mathbf{F}}_{{{\varvec{\upbeta}},K}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,K}} ] $$
(83)
$$ {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} }}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} }} = {\text{blkdiag[}}{\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,1}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,1}}\;{\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} , 2}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} , 2}} \cdots {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,K}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,K}} ] $$
(84)
$$ {\mathbf{F}}_{{\varvec{\upbeta}}}^{\text{H}} {\mathbf{F}}_{{\mathbf{p}}} = [({\mathbf{F}}_{{{\varvec{\upbeta}},1}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},1}} )^{\text{H}}\;({\mathbf{F}}_{{{\varvec{\upbeta}},2}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},2}} )^{\text{H}} \cdots ({\mathbf{F}}_{{{\varvec{\upbeta}},K}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},K}} )^{\text{H}} ]^{\text{H}} $$
(85)
$$ {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} }}^{\text{H}} {\mathbf{F}}_{{\mathbf{p}}} = [({\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,1}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},1}} )^{\text{H}}\;({\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,2}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},2}} )^{\text{H}} \cdots ({\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,K}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},K}} )^{\text{H}} ]^{\text{H}} $$
(86)
$$ {\mathbf{F}}_{{\mathbf{p}}}^{\text{H}} {\mathbf{F}}_{{\mathbf{p}}} = \sum\limits_{k = 1}^{K} {{\mathbf{F}}_{{{\mathbf{p}},k}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},k}} } $$
(87)

where

$$ {\mathbf{F}}_{{{\varvec{\upbeta}},k}}^{\text{H}} {\mathbf{F}}_{{{\varvec{\upbeta}},k}} = \sum\limits_{l = 1}^{L} {({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} )} $$
(88)
$$\begin{aligned} {\mathbf{F}}_{{{\varvec{\upbeta}},k}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,k}} &= [({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{1} )\\ &\quad\quad\cdots ({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{L} )] \end{aligned}$$
(89)
$$ \begin{aligned}{\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,k}}^{\text{H}} {\mathbf{F}}_{{\text{Re} \{ {\mathbf{s}}\} ,k}} &= {\text{blkdiag}}[({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{1} )\\ &\quad\quad\cdots ({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{L} )]\end{aligned} $$
(90)
$$ \begin{aligned} {\mathbf{F}}_{{{\varvec{\upbeta}},k}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},k}} = & \left( {\sum\limits_{l = 1}^{L} {({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{l} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} } \right)\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }} \\ & \quad + \sum\limits_{l = 1}^{L} {({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{l} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{l} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{l} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ \end{aligned} $$
(91)
$$ \begin{aligned} {\mathbf{F}}_{{{\text{Re}}\{ {\mathbf{s}}\} ,k}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},k}} = & \left[ {\begin{array}{*{20}c} {({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{1} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{1} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} \\ {({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{2} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{2} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{2} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} \\ \vdots \\ {({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{L} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{L} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} \\ \end{array} } \right]\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }} \\ & \quad + \left[ {\begin{array}{*{20}c} {({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{1} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ {({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{2} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{2} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{2} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ \vdots \\ {({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{L} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ \end{array} } \right] \\ \end{aligned} $$
(92)
$$ \begin{aligned} {\mathbf{F}}_{{{\mathbf{p}},k}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},k}} = & \left( {\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }}} \right)^{\text{H}} \left( {\left( {\sum\limits_{l = 1}^{L} {{\varvec{\Delta}}_{k} ({\mathbf{s}}_{k} (t_{l} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{ * } ({\mathbf{s}}_{k} (t_{l} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{T}} {\varvec{\Delta}}_{k} } } \right) \otimes {\mathbf{I}}_{(N + 1)M} } \right)\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }} \\ & \quad + \left( {\sum\limits_{l = 1}^{L} {\left( {\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \right)^{\text{H}} ({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{l} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{l} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} } \right)\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }} \\ & \quad + \left( {\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }}} \right)^{\text{H}} \left( {\sum\limits_{l = 1}^{L} {(({\varvec{\Delta}}_{k} ({\mathbf{s}}_{k} (t_{l} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} ))^{ * } ) \otimes {\mathbf{I}}_{(N + 1)M} ){\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{l} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} } \right) \\ & \quad + \sum\limits_{l = 1}^{L} {\left( {\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \right)^{\text{H}} ({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{l} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{l} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{l} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ \end{aligned} $$
(93)

Appendix 6: Detailed Expressions for \( {\mathbf{F}}_{{\varvec{\upbeta}}}^{{\mathbf{H}}} {\mathbf{F}}_{{\boldsymbol{\varphi }}} \), \( {\mathbf{F}}_{{\boldsymbol{\varphi }}}^{{\mathbf{H}}} {\mathbf{F}}_{{\boldsymbol{\varphi }}} \), and \( {\mathbf{F}}_{{\boldsymbol{\varphi }}}^{{\mathbf{H}}} {\mathbf{F}}_{{\mathbf{p}}} \)

Performing some algebraic manipulations and combining (32), (33), (52) and (53) yield

$$ {\mathbf{F}}_{{\varvec{\upbeta}}}^{\text{H}} {\mathbf{F}}_{{\boldsymbol{\varphi }}} = {\text{blkdiag[}}{\mathbf{F}}_{{{\varvec{\upbeta}},1}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }},1}}\;{\mathbf{F}}_{{{\varvec{\upbeta}}, 2}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }}, 2}} \cdots {\mathbf{F}}_{{{\varvec{\upbeta}},K}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }},K}} ] $$
(94)
$$ {\mathbf{F}}_{{\boldsymbol{\varphi }}}^{\text{H}} {\mathbf{F}}_{{\boldsymbol{\varphi }}} = {\text{blkdiag[}}{\mathbf{F}}_{{{\boldsymbol{\varphi }},1}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }},1}}\;{\mathbf{F}}_{{{\boldsymbol{\varphi }}, 2}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }}, 2}} \cdots {\mathbf{F}}_{{{\boldsymbol{\varphi }},K}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }},K}} ] $$
(95)
$$ {\mathbf{F}}_{{\boldsymbol{\varphi }}}^{\text{H}} {\mathbf{F}}_{{\mathbf{p}}} = [({\mathbf{F}}_{{{\boldsymbol{\varphi }},1}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},1}} )^{\text{H}}\;({\mathbf{F}}_{{{\boldsymbol{\varphi }},2}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},2}} )^{\text{H}} \cdots ({\mathbf{F}}_{{{\boldsymbol{\varphi }},K}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},K}} )^{\text{H}} ]^{\text{H}} $$
(96)

where

$$\begin{aligned} {\mathbf{F}}_{{{\varvec{\upbeta}},k}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }},k}} & = [{\text{j}}({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ) \cdots \\ &\qquad {\text{j}}({\mathbf{B}}_{k} ({\mathbf{p}}){\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} )] \end{aligned} $$
(97)
$$ \begin{aligned} {\mathbf{F}}_{{{\boldsymbol{\varphi }},k}}^{\text{H}} {\mathbf{F}}_{{{\boldsymbol{\varphi }},k}} & = {\text{blkdiag[(}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ) \cdots\\ &\qquad ({\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ) ]\\ \end{aligned} $$
(98)
$$ \begin{aligned} {\mathbf{F}}_{{{\boldsymbol{\varphi }},k}}^{\text{H}} {\mathbf{F}}_{{{\mathbf{p}},k}} = & \left[ {\begin{array}{*{20}c} {({\text{j}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{1} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{1} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} \\ {({\text{j}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{2} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{2} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{2} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{2} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} \\ \vdots \\ {({\text{j}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} ((({\mathbf{s}}_{k} (t_{L} ) \odot {\mathbf{r}}_{k} ({\mathbf{p}},t_{L} ))^{\text{T}} {\varvec{\Delta}}_{k} ) \otimes {\mathbf{I}}_{(N + 1)M} )} \\ \end{array} } \right]\frac{{\partial {\text{vec}}({\mathbf{B}}_{k} ({\mathbf{p}}))}}{{\partial {\mathbf{p}}^{\text{T}} }} \\ & \quad + \left[ {\begin{array}{*{20}c} {({\text{j}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{1} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{1} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{1} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ {({\text{j}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{2} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{2} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{2} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{2} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ \vdots \\ {({\text{j}}{\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} ){\mathbf{R}}_{k} ({\mathbf{p}},t_{L} ))^{\text{H}} {\mathbf{B}}_{k} ({\mathbf{p}}){\varvec{\Delta}}_{k} {\mathbf{S}}_{k} (t_{L} )\frac{{\partial {\mathbf{r}}_{k} ({\mathbf{p}},t_{L} )}}{{\partial {\mathbf{p}}^{\text{T}} }}} \\ \end{array} } \right] \\ \end{aligned} $$
(99)

Appendix 7: Proof of Proposition 3

Notice that

$$ \left[ {\begin{array}{*{20}c} {{\mathbf{A}}_{1} {\mathbf{A}}_{2}^{ - 1} {\mathbf{A}}_{1}^{\text{H}} }\;& \,\, {{\mathbf{A}}_{1} } \\ {{\mathbf{A}}_{1}^{\text{H}} }\;& \,\, {{\mathbf{A}}_{ 2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{A}}_{1} {\mathbf{A}}_{2}^{ - 1} } \\ {{\mathbf{I}}_{n} } \\ \end{array} } \right]{\mathbf{A}}_{ 2} [{\mathbf{A}}_{2}^{ - 1} {\mathbf{A}}_{1}^{\text{H}} \,\,{\mathbf{I}}_{n} ] \ge {\mathbf{O}} $$
(100)

which implies

$$ {\text{Re}}\left\{ {\left[ {\begin{array}{*{20}c} {{\mathbf{A}}_{1} {\mathbf{A}}_{2}^{ - 1} {\mathbf{A}}_{1}^{\text{H}} } \;& \,\, {{\mathbf{A}}_{1} } \\ {{\mathbf{A}}_{1}^{\text{H}} }\;& \,\, {{\mathbf{A}}_{ 2} } \\ \end{array} } \right]} \right\} = \left[ {\begin{array}{*{20}c} {\text{Re} \{ {\mathbf{A}}_{1} {\mathbf{A}}_{2}^{ - 1} {\mathbf{A}}_{1}^{\text{H}} \} }\;& {\text{Re} \{ {\mathbf{A}}_{1} \} } \\ \,\, {\text{Re} \{ {\mathbf{A}}_{1}^{\text{H}} \} }\;& \,\, {\text{Re} \{ {\mathbf{A}}_{ 2} \} } \\ \end{array} } \right] \ge 0 $$
(101)

Moreover, it can be checked that

(102)

Then, we have

$$ \text{Re} \{ {\mathbf{A}}_{1} {\mathbf{A}}_{2}^{ - 1} {\mathbf{A}}_{1}^{\text{H}} \} - \text{Re} \{ {\mathbf{A}}_{1} \} (\text{Re} \{ {\mathbf{A}}_{2} \} )^{ - 1} \text{Re} \{ {\mathbf{A}}_{1}^{\text{H}} \} \ge {\mathbf{O}} $$
(103)

which is equivalent to

$$ \text{Re} \{ {\mathbf{A}}_{1} {\mathbf{A}}_{2}^{ - 1} {\mathbf{A}}_{1}^{\text{H}} \} \ge \text{Re} \{ {\mathbf{A}}_{1} \} (\text{Re} \{ {\mathbf{A}}_{2} \} )^{ - 1} \text{Re} \{ {\mathbf{A}}_{1}^{\text{H}} \} $$
(104)

At this point, the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yin, Jx., Chen, X. et al. Direct Position Determination of Multiple Constant Modulus Sources Based on Direction of Arrival and Doppler Frequency Shift. Circuits Syst Signal Process 39, 268–306 (2020). https://doi.org/10.1007/s00034-019-01170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01170-6

Keywords

Navigation