Robust Control for Continuous LPV System with Restricted-Model-Based Control | Circuits, Systems, and Signal Processing Skip to main content
Log in

Robust Control for Continuous LPV System with Restricted-Model-Based Control

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with the robust stabilization of a class of linear parameter varying systems in the continuous control case. Instead of using a state observer or searching for a dynamic output feedback, the considered controller is based on output derivative estimation. This allows the stabilization of the plant with very large parameter variation or uncertainties. The robustness of such controller, for any all-poles single-input/single-output system, is provided for second- and third-order plants. The proof of stability is based on the polytopic representation of the closed loop under Lyapunov conditions and system transformations. The result is a control structure with only one parameter tuned via very simple conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Abouaissa, M. Fliess, V. Iordanova, C. Join, First steps towards a model-free control of a freeway traffic flow—prolégomènes à une régulation sans modèle du trafic autoroutier, in Conférence Méditerranée sur l’Ingénierie Sûre des Systèmes Complexes (2011)

  2. K. Åström, T. Hägglund, Advanced PID Control. The Instrumentation, Systems, and Automation Society (Research Triangle Park, Durham, 2006)

    Google Scholar 

  3. S. Boyd, L. El-Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory. SIAM 15, 23–24 (1994)

    MathSciNet  MATH  Google Scholar 

  4. B. D’Andréa-Novel, C. Boussard, M. Fliess, O. El Hamzaoui, H. Mounier, B. Steux, Commande sans modèle de la vitesse longitudinale d’un véhicule électrique, in Sixième Conférence Internationale Francophone d’Automatique (2010)

  5. R. Delpoux, M. Bodson, T. Floquet, Parameter estimation of permanent magnet stepper motors without position or velocity sensors, in American Control Conference (2012)

  6. J. Dong, G.H. Yang, Dynamic output feedback \({H\infty }\) control synthesis for discrete-time t–s fuzzy systems via switching fuzzy controllers. Fuzzy Sets Syst. 160(4), 482–499 (2009). doi:10.1016/j.fss.2008.04.009

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Feng, L. Wang, Terminal sliding mode observer based parameter estimation method for permanent magnet synchronous motor control system, in International Workshop on Variable Structure Systems, pp. 184–189 (2010)

  8. M. Fliess, C. Join, Model-free control. Int. J. Control 86(12), 2228–2252 (2013). doi:10.1080/00207179.2013.810345

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Gédouin, E. Delaleau, J. Bourgeot, C. Join, S. Arbab-Chirani, S. Calloch, Experimental Comparison of Classical Pid and Model-Free Control: Position Control of a Shape Memory Alloy Active Spring (Elsevier, Amsterdam, 2011)

    Google Scholar 

  10. M. Harchay, B. Louhichi, S. Maalej, M. Smaoui, On the model-free control of an electropneumatic system, in International conference on Sciences and Techniques of Automatic control and computer engineering (2015)

  11. S. Hecker, A. Varga, Generalized LFT-based representation of parametric uncertain models. Eur. J. Control 10(4), 326–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Huang, S.K. Nguang, Static output feedback controller design for fuzzy systems: an ILMI approach. Inf. Sci. 177(14), 3005–3015 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Join, J. Masse, M. Fliess, Etude préliminaire d’une commande sans modèle pour papillon de moteur... A model-free control for an engine throttle: a preliminary study. J. Eur. Syst. Autom. 42(2–3), 337–354 (2008)

    Google Scholar 

  14. S. Kawamoto, K. Tada, A. Ishigame, T. Taniguchi, An approach to stability analysis of second order fuzzy systems, in IEEE International Conference on Fuzzy Systems, pp. 1427–1434 (1992)

  15. A. Khodabakhshian, M. Edrisi, A new robust PID load frequency controller. Control Eng. Pract. 16(9), 1069–1080 (2008)

    Article  Google Scholar 

  16. L. Lee, Identification and robust control of linear parameter-varying systems. PhD thesis, University of California at Berkeley, California (1997)

  17. H. Li, Y. Gao, P. Shi, H.K. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016). doi:10.1109/TAC.2015.2503566

    Article  MathSciNet  Google Scholar 

  18. H. Li, C. Wu, S. Yin, H.K. Lam, Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2015). doi:10.1109/TFUZZ.2015.2505331

    Article  Google Scholar 

  19. H. Li, P. Shi, D. Yao, L. Wu, Observer-based adaptive sliding mode control for nonlinear markovian jump systems. Automatica 64, 133–142 (2016). doi:10.1016/j.automatica.2015.11.007

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Li, L. Xiaodong, L. Yong’an, Z. Lilin, H. Zhengping, Research on robust \({H_2/H_\infty }\); optimization control for unified power quality conditioner in micorgrid. Int. Power Electron. Motion Control Conf. 4, 2864–2867 (2012)

    Google Scholar 

  21. S. Maalej, A. Kruszewki, L. Belkoura, Derivative based control for ltv system with unknown parameters, in European Control Conference, pp. 1341–1346 (2013)

  22. S. Maalej, A. Kruszewski, R. Delpoux, L. Belkoura, Derivative based control for LPV system with unknown parameters: an application on a permanent magnet synchronous motors, in International Multi-conference on Systems, Signals Devices, pp. 1–6 (2014)

  23. B. Mansouri, N. Manamanni, K. Guelton, A. Kruszewski, T.M. Guerra, Output feedback LMI tracking control conditions with \({H_\infty }\); criterion for uncertain and disturbed t–s models. Inf. Sci. 179(4), 446–457 (2009)

    MathSciNet  MATH  Google Scholar 

  24. A. Marcos, J. Balas, Development of linear-parameter-varying models for aircraft. J. Guid. Control Dyn. 27(2), 218–228 (2004)

    Article  Google Scholar 

  25. M. Mboup, Parameter estimation for signals described by differential equations. Appl. Anal. 88(1), 29–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. M.N. Nounou, H.N. Nounou, M.S. Mahmoud, Robust adaptive sliding-mode control for continuous time-delay systems. IMA J. Math. Control Inf. 24(3), 299–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Sala, T.M. Guerra, R. Babus̆ka, Perspectives of fuzzy systems and control. Fuzzy Sets Syst. 156(3), 432–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Sato, Gain-scheduled output-feedback controllers depending solely on scheduling parameters via parameter-dependent Lyapunov functions. Automatica 12, 2786–2790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Shamma, Analysis and design of gain scheduled control systems. PhD thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering (1988)

  30. J. Shamma, D. Xiong, Set-valued methods for linear parameter varying systems. Automatica 35, 1081–1089 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Sidhom, X. Brun, E. Bideaux, D. Thomasset, Suivi de trajectoire en position d’un servo-vérin hydraulique via la technique de Backstepping, in CIFA, Nancy, France, pp. Ve–A2 (2010)

  32. J. Slotine, Sliding controller design for non-linear systems. Int. J. Control 40(2), 421–434 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Smaoui, X. Brun, D. Thomasset, A robust differentiator-controller design for an electropneumatic system, in IEEE Conference on Decision and Control, pp. 4385–4390 (2005)

  34. M. Smaoui, X. Brun, D. Thomasset, Systematic control of an electropneumatic system: integrator backstepping and sliding mode control. IEEE Trans. Control Syst. Technol. 14(5), 905–913 (2006). doi:10.1109/TCST.2006.880183

    Article  Google Scholar 

  35. J. Stecha, J. Roubal, Lq and dead beat control combination from the set of stabilizing controllers, in Mediterranean Conference on Control and Automation, pp. 895–900 (2008)

  36. W. Tan, Applications of linear parameter-varying control theory. PhD thesis, Department of Mechanical Engineering, University of California at Berkeley, Berkeley (1997)

  37. K. Tanaka, T. Ikeda, H.O. Wang, Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

    Article  Google Scholar 

  38. K. Tanaka, T. Hori, H. Wang, A fuzzy lyapunov approach to fuzzy control system design, in Proceedings of the American Control Conference, vol. 6, pp. 4790–4795 (2001)

  39. A. Van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  40. Y. Watanabe, I. Takami, G. Chen, Tracking control for 2DOF helicopter via robust LQ control with adaptive law, in Control Conference, pp. 399–404 (2012)

  41. Y. Watanabe, N. Katsurayama, I. Takami, G. Chen, Robust LQ control with adaptive law for MIMO descriptor system, in Asian Control Conference, pp. 1–6 (2013)

  42. S. Yan, Z. Sun, Study on separation principles for t–s fuzzy system with switching controller and switching observer. Neurocomputing 73(13–15), 2431–2438 (2010)

    Article  Google Scholar 

  43. B. Zhang, Q. Han, Robust sliding mode \({H_\infty }\); control using time-varying delayed states for offshore steel jacket platforms, in IEEE International Symposium on Industrial Electronics, pp. 1–6 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Maalej.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maalej, S., Kruszewski, A. & Belkoura, L. Robust Control for Continuous LPV System with Restricted-Model-Based Control. Circuits Syst Signal Process 36, 2499–2520 (2017). https://doi.org/10.1007/s00034-016-0404-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0404-6

Keywords

Navigation