Question answering with Textual CBR | SpringerLink
Skip to main content

Question answering with Textual CBR

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1495))

Included in the following conference series:

Abstract

In this paper, we show how case-based reasoning (CBR) techniques can be applied to document retrieval. The fundamental idea is to automatically convert textual documents into appropriate case representations and use these to retrieve relevant documents in a problem situation. In contrast to Information Retrieval techniques, we assume that a Textual CBR system focuses on a particular domain and thus can employ knowledge from that domain. We give an overview over our approach to Textual CBR, describe a particular application project, and evaluate the performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnar Aamodt and Enric Plaza, ‘Case-based reasoning: foundational issues, methodological variations, and system approaches', AI Communications, 7(1), 39–59, (1994).

    Google Scholar 

  2. Robin Burke, Kristian Hammond, Vladimir Kulyukin, Steven Lytinen, Noriko Tomuro, and Scott Schoenberg, ‘Question Answering from Frequently Asked Question Files', AI Magazine, 18(2), 57–66, (1997).

    Google Scholar 

  3. Jody J Daniels, Retrieval of Passages for Information Reduction, Ph.D. dissertation, University of Massachusetts at Amherst, 1997.

    Google Scholar 

  4. Jody J Daniels and Edwina L Rissland, ‘What You Saw Is What You Want: Using Cases to Seed Information', In Leake and Plaza [8], pp. 325–336.

    Google Scholar 

  5. Lothar Gierl and Mario Lenz, eds. Proceedings 6th German Workshop on Case-Based Reasoning, IMIB Series Vol. 7, Rostock, 1998. Inst. fuer Medizinische Informatik und Biometrie, University of Rostock.

    Google Scholar 

  6. Günther Görz and Steffen Hölldobler, eds. KI-96: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 1137. Springer Verlag, 1996.

    Google Scholar 

  7. Mirjam Kunze and Andre Hübner, ‘CBR on Semi-structured Documents: The ExperienceBook and the FAllQ Project', in Proceedings 6th German Workshop on CBR, (1998).

    Google Scholar 

  8. David B Leake and Enric Plaza, eds. Case-Based Reasoning Research and Development, Proceedings ICCBR-97, Lecture Notes in Artificial Intelligence, 1266. Springer Verlag, 1997.

    Google Scholar 

  9. Mario Lenz, ‘Textual CBR and Information Retrieval — A Comparison', In Gierl and Lenz [5].

    Google Scholar 

  10. Mario Lenz and Hans-Dieter Burkhard, ‘Case Retrieval Nets: Basic ideas and extensions', In Görz and Hölldobler [6], pp. 227–239.

    Google Scholar 

  11. Mario Lenz and Hans-Dieter Burkhard, ‘CBR for Document Retrieval — The FAllQ Project', In Leake and Plaza [8], pp. 84–93.

    Google Scholar 

  12. Mario Lenz, Hans-Dieter Burkhard, Petra Pirk, Eric Auriol, and Michel Manago, ‘CBR for Diagnosis and Decision Support', AI Communications, 9(3), 138–146, (1996).

    Google Scholar 

  13. G A Miller, ‘Wordnet: A lexical database for english', Communications of the ACM, 38(11), 39–41, (1995).

    Article  Google Scholar 

  14. Michael M. Richter. The knowledge contained in similarity measures. Invited Talk at ICCBR-95, 1995. http://wwwyagr.informatik.unikl.de/~lsa/CBR/Richtericcbr95remarks.html.

    Google Scholar 

  15. Ellen Riloff and Wendy Lehnert, ‘Information extraction as a basis for high-precision text classification', ACM Transactions on Information Systems, 12(3), 296–333, (1994).

    Article  Google Scholar 

  16. Gerard Salton and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Troels Andreasen Henning Christiansen Henrik Legind Larsen

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenz, M., Hübner, A., Kunze, M. (1998). Question answering with Textual CBR. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 1998. Lecture Notes in Computer Science, vol 1495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056005

Download citation

  • DOI: https://doi.org/10.1007/BFb0056005

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65082-9

  • Online ISBN: 978-3-540-49655-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics