Feature-based perception of semantic concepts | SpringerLink
Skip to main content

Feature-based perception of semantic concepts

  • Chapter
  • First Online:
Foundations of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

Abstract

In this paper we shall point to some principles of neural computation as they have been derived from experimental and theoretical studies primarily on vision. We argue that these principles are well suited to explain some characteristics of the linguistic function of semantic concept recognition. Computational models built on these principles have been applied to morphological-grammatical categories (aspect), function words (determiners) and discourse particles in spoken language. We suggest a few ways in which these studies may be extended to include more detail on neural functions into the computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1983.

    Google Scholar 

  2. E. Bienenstock. In R. Eckmiller and C. v.d. Malsburg, editors, Neural computers. Springer, 1988.

    Google Scholar 

  3. M. Bierwisch. Essays in the psychology of language. Zentralinstitut für Sprachwissenschaft, 1983.

    Google Scholar 

  4. B. Boguraev and J. Pustejovsky, editors. Corpus Processing for Lexical Acquisition. MIT, 1996.

    Google Scholar 

  5. P. Churchland, V. Ramachandran, and T. Sejnowski. A critique of pure vision. In C. Koch and J. Davis, editors, Large-Scale Neuronal Theories of the Brain. MIT, 1994.

    Google Scholar 

  6. E. Clark. The lexicon in acquisition. Cambridge University Press, 1993.

    Google Scholar 

  7. G. Cottrell. A Connectionist Approach to Word Sense Disambiguation. Pitman, London, 1989.

    Google Scholar 

  8. G. Ehret. Categorical perception of sound signals: Facts and hypotheses from animal studies. In S. Harnad, editor, Categorical perception, pages 301–331. Cambridge University Press, 1987.

    Google Scholar 

  9. T. Givón. Functionalism and grammar. John Benjamins, 1995.

    Google Scholar 

  10. A.J. Greimas. Structural Semantics. University of Nebraska Press, 1983. (Translated from Semantique structurale, Gallimard, 1966.)

    Google Scholar 

  11. S. Harnad, editor. Categorical Perception: The groundwork of Cognition. Cambridge University Press, 1987.

    Google Scholar 

  12. M. Hauser. The evolution of communication. MIT Press, 1996.

    Google Scholar 

  13. H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation. Studies in Linguistics and Philosophy. Kluwer, 1993.

    Google Scholar 

  14. H. Kamp and A. Rossdeutscher. Remarks on lexical structure and drs construction. Theoretical Linguistics, 20(2/3):97–164, 1994.

    Article  Google Scholar 

  15. J. K. Kruschke and M. A. Erickson. Five principles for models of category learning. In Z. Dienes, editor, Connectionism and Human Learning. Oxford University, 1995.

    Google Scholar 

  16. P. Kuhl, K.A. Williams, F. Lacerda, K.N. Stevens, and B. Lindblom. Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255:606–608, 1992.

    Google Scholar 

  17. P.K. Kuhl and A.N. Meltzoff. Speech as an intermodal object of perception. In A. Yonas, editor, Perceptual development in infancy, pages 235–256. Lawrence Erlbaum, 1988.

    Google Scholar 

  18. G. Lakoff. Women, Fire and Dangerous Things. Chicago University Press, 1987.

    Google Scholar 

  19. R. Langacker. Foundations of Cognitive Grammar. Stanford University Press, 1987.

    Google Scholar 

  20. E. Markmann. Constraints children place on word meanings. Cognitive Science, 14:57–77, 1990.

    Article  Google Scholar 

  21. I.A. Mel'cuk and A. Polguère. A formal lexicon in the meaning-text theory. Computational Linguistics, 13(3–4), 1987.

    Google Scholar 

  22. I. A. Mel'cuk. Semantic descriptions of lexical units in an explanatory combinatorial dictionary. Basic principles and heuristic criteria. International Journal of Lexicography 1, pages 165–188, 1988.

    Google Scholar 

  23. R. Miikkulainen, J. Bednar, Y. Choe, and J. Sirosh. Self-organization, plasiticity, and low-level visual phenomena in a laterally connected map model of the primary visual cortex. Psychology of Learning and Motivation, 1997.

    Google Scholar 

  24. R. Miikkulainen. Subsymbolic Natural Language Processing: An Integrated Model of Scripts, Lexicon, and Memory. Neural Network Modeling and Connectionism Series. MIT Press, 1993.

    Google Scholar 

  25. R. Montague. Formal Philosophy. Yale University Press, 1976.

    Google Scholar 

  26. M. Raijmakers. Epigenesis of neural network models of cognitive development. PhD thesis, University of Amsterdam, 1997.

    Google Scholar 

  27. T. Regier. The Human Semantic Potential. MIT, 1996.

    Google Scholar 

  28. J. Saffran, R. N. Aslin and E. L. Newport. Statistical learning by 8-months-old infants. Science, 274:1926, 1996.

    Google Scholar 

  29. G. Scheler. Three approaches to word meaning. Technical report, Computerlinguistik, Universität Heidelberg, November 1988.

    Google Scholar 

  30. G. Scheler. Generating English plural determiners from semantic representations. In S. Wermter, E. Riloff, and G. Scheler, editors, Learning for natural language processing: Statistical, connectionist and symbolic approaches, pages 61–74. Springer, 1996.

    Google Scholar 

  31. G. Scheler. Lexematische äquivalenz in der maschinellen übersetzung. Technical Report FKI-210, Institut für Informatik, TU München, 1996.

    Google Scholar 

  32. G. Scheler. Learning the semantics of aspect. In H. Somers, editor, New Methods in Language Processing. University College London Press, 1997.

    Google Scholar 

  33. G. Scheler and J. Schumann. A hybrid model of semantic inference. In Alex Monaghan, editor, Proceedings of the 4th International Conference on Cognitive Science in Natural Language Processing (CSNLP 95), pages 183–193, 1995.

    Google Scholar 

  34. H. Schuetze. Ambiguity Resolution in Language Learning, volume 71 of CSLI Publications. Chicago University Press, 1997.

    Google Scholar 

  35. P. G. Schyns, R. L. Goldstone, and J. Thibaut. The development of features in object concepts. Behavioral and Brain Sciences, 21, 1997 (to appear).

    Google Scholar 

  36. G. Shepherd. Neurobiology. Oxford University Press, 3rd edition, 1994.

    Google Scholar 

  37. W. Singer. Synchronization of cortical activity and its putative role in information processing and learning. Annual Reviews of Physiology, 55:349–374, 1993.

    Article  Google Scholar 

  38. W. Singer and C.M. Gray. Visual feature integration and the temporal correlation hypothesis. Annual Reviews of Neuroscience, 18:555–586, 1995.

    Article  Google Scholar 

  39. D. Swinney. Lexical access during sentence comprehension: (re) consideration of context effects. Journal of verbal learning and verbal behavior, 6:645–659, 1979.

    Article  Google Scholar 

  40. P. Tabossi. Sentential context and lexical acess. In S. Small, G. Cottrell, and M.Tanenhaus, editors, Lexical Ambiguity Resolution. Morgan Kaufman, 1988.

    Google Scholar 

  41. A. Treisman. The binding problem. Current Opinion in Neurobiology, 6:171–178, 1996.

    Article  Google Scholar 

  42. J. Triesch and C. v.d.Malsburg. Binding — a proposed experiment and a model. In Proceedings of ICANN. Springer, 1996.

    Google Scholar 

  43. D. C. Van Essen and E. A. Deyoe. Concurrent processing in the primate visual cortex. In M. Gazzaniga, editor, The Cognitive Neurosciences. MIT Press, 1995.

    Google Scholar 

  44. C. Van Petten and M. Kutas. Ambiguous words in context: An event-related potential analysis of the time course of meaning activation. Journal of Memory and Language, 26:188–208, 1987.

    Article  Google Scholar 

  45. C. von der Malsburg. The correlation theory of brain function. In K. Schulten and L van Hemmen, editors, Models of Neural Networks 2. Springer, 1994.

    Google Scholar 

  46. J. Wilkins and J. Wakefield. Brain evolution and neurolinguistic preconditions. Behavioral and Brain Sciences, 18:161–226, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheler, G. (1997). Feature-based perception of semantic concepts. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052118

Download citation

  • DOI: https://doi.org/10.1007/BFb0052118

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics