Abstract
This paper studies the arrangement problem of uniform trees and shows that the arrangement complexity of a uniform tree is either θ(1) or Ω((lg n)γ)(γ > 0). It also presents a recursive algorithm to compute the optimal complete arrangements for θ(1) arrangeable balanced uniform trees.
Preview
Unable to display preview. Download preview PDF.
References
B. Becker, and J. Hartmann. Optimal-Time Multipliers and C-Testability. Proceedings of the 2nd Annual Symposium on Parallel Algorithms and Architectures, pp.146–154, 1990.
B. Becker, and U. Sparmann. Computations over Finite Monoids and their Test Complexity. Theoretical Computer Science, pp.225–250, 1991.
R. Fritzemeier, J. Soden, R. K. Treece, and C. Hawkins. Increased CMOS IC stuck-at fault coverage with reduced IDDQ test sets. International Test Conference, pp.427–435, 1990
J. P. Hayes. On Realizations of Boolean Functions Requiring a Minimal or Near-Minimal Number of Tests. IEEE Trans. on Computers Vol. C-20, No. 12, pp.1506–1513, 1971.
G. Hotz. Eine Algebraisierung des Syntheseproblems von Schaltkreisen. EIK 1, 185–205, 209–231, 1965.
G. Hotz. Schaltkreistheorie. Walter de Gruyter · Berlin · New York 1974.
G. Hotz, H. Wu. “On the Arrangement Complexity of Uniform Trees”, Technical Report, SFB 124-B1, 05/1995, FB-14, Informatik, Universität des Saarlandes, Germany.
S. C. Seth, and K.L. Kodandapani. Diagnosis of Faults in Linear Tree Networks. IEEE Trans. on Computers, C-26(1), pp.29–33, 1977.
H. Wu. On Tests of Uniform Tree Circuits. Proceeding of CONPAR VAPP V, pp.527–538, 1992.
H. Wu, U. Sparmann. On the Assignments Complexity of Tree VLSI Systems. Proceeding of 7th International Symposium on Computer and Information Sciences, pp.97–103, 1992.
H. Wu. On the Assignments Complexity of Uniform Trees. Proceeding of International Symposium on Symbolic and Algebraic Computation, ISSAC' 93, pp.95–104.
H. Wu. On the Test Complexity of VLSI Systems, Dissertation, University of Saarland, 1994
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hotz, G., Wu, H. (1997). On the arrangement complexity of uniform trees. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052102
Download citation
DOI: https://doi.org/10.1007/BFb0052102
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63746-2
Online ISBN: 978-3-540-69640-7
eBook Packages: Springer Book Archive