Abstract
This article discusses the existence of SymSPACE(logn)-complete formal languages. It is shown that a recent approach of Alvarez and Greenlaw to define symmetric versions of one-way devices doesn't lead to SymSPACE(log n) complete problems when applied to linear context-free or to one-counter languages.
Preview
Unable to display preview. Download preview PDF.
References
E. Allender, K.-J. Lange. Symmetry coincides with nondeterminism for time bounded auxiliary pushdown automata, in preparation, 1997.
C. Alvarez and R. Greenlaw. A compendium of problems complete for symmetric logarithmic space. Report TR96-039, ECCC, 6 1996.
R. Armoni, A. Ta-shma, A. Wigderson, and S. Zhou. SL 134-1 L 4/3. submitted, 1996.
D.A. Barrington. Bounded-width polynomial-size branching programs can recognize exactly those languages in NC 1. J. Comp. System Sci., 38:150–164, 1989.
Ka Wong Chong and Tak Wah Lam. Finding connected components in O(log n log log n) time on the EREW PRAM. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 11–20, 1993.
P. Flajolet and J. Steyaert. Complexity of classes of languages and operators. Rap. de Recherche 92, IRIA Laboria, Nov. 1974.
M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE Structure in Complexity Theory Conference, pages 102–111, 1993.
P. Lewis and C.H. Papadimitriou. Symmetric space-bounded computation. Theoret. Comput. Sci., 19:161–187, 1982.
P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for recognition of context-free and context-sensitive languages. In Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, pages 191–209, 1965.
N. Nisan. RL 134-1 SC. In Proc. of the 24th Annual ACM Symposium on Theory of Computing, pages 619–623, 1992.
W. Ruzzo. Tree-size bounded alternation. J. Comp. System Sci., 21:218–235, 1980.
E. Shamir and C. Beeri. Checking stacks and context-free programmed grammars accept p-complete languages. In Proc. of 2nd ICALP, number 14 in LNCS, pages 277–283. Springer, 1974.
I. Sudborough. A note on tape-bounded complexity classes and linear context-free languages. J. Assoc. Comp. Mach., 22:499–500, 1975.
I. Sudborough. On tape-bounded complexity classes and multi-head finite automata. J. Comp. System Sci., 10:62–76, 1975.
I. Sudborough. On the tape complexity of deterministic context-free languages. J. Assoc. Comp. Mach., 25:405–414, 1978.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lange, K.J. (1997). Are there formal languages complete for SymSPACE(log n)?. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052081
Download citation
DOI: https://doi.org/10.1007/BFb0052081
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63746-2
Online ISBN: 978-3-540-69640-7
eBook Packages: Springer Book Archive