Abstract
After decades of success, research on evolutionary algorithms aims at developing a sound theory that describes and predict the behavior of these algorithms. One research topic of interest is the analysis of the role of crossover and recombination in genetic algorithms, especially since various papers come to different conclusions. The goals of this paper are to revisit some well-known concepts and to discuss some new aspects that might be helpful for further clarification.
Preview
Unable to display preview. Download preview PDF.
References
L. Altenberg. The Schema Theorem and the Price's Theorem, In: L.D. Whitley and M.D. Vose (Eds.) Foundations of Genetic Algorithms 3, 23–49, 1995. Morgan Kaufmann, San Mateo, CA.
T. Bäck and H.-P. Schwefel. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation. 1(1):1–23, 1993.
H.-G. Beyer. Toward a Theory of Evolution Strategies: the (μ, λ)-Theory. Evolutionary Computation. 2(4):381–407, 1995.
H.-G. Beyer. Toward a Theory of Evolution Strategies: on the Benefit of Sex — the (μ/μ, λ)-Theory. Evolutionary Computation. 3(1):81–110, 1995.
H.-G. Beyer. An Alternative Explanation for the Manner in which Genetic Algorithms Operate. BioSystems. 41:1–15, 1997.
K.A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Thesis, University of Michigan, 1975.
D. Floreano, and F. Mondada. Evolution of Homing Navigation in a Real Mobile Robot. IEEE Transactions on Systems, Man, and Cybernetics-Part B. 26(3):396–407, 1996.
D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Learning Intelligence, IEEE Press, NJ, 1995.
L.J. Fogel. Autonomous Automata, Industrial Research. 4:14–19, 1962.
D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA, 1989.
J.J. Grefenstette and J.E. Baker. How Genetic Algorithms Work: A Critical Look at Implicit Parallelism. In: J.D. Schaffer (Ed.) Proceedings of the International Conference on Genetic Algorithms ICGA3, 20–27, 1989. Morgan Kaufmann, San Mateo, CA.
J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, 1992.
H. Mühlenbein and D. Schlierkamp-Voosen. Predictive Models for the Breeder Genetic Algorithm I. Evolutionary Computation. 1(1):25–50, 1993.
I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog, Stuttgart, 1973.
R. Salomon. Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms. BioSystems. 39(3):263–278, 1996.
R. Salomon. The Influence of Different Coding Schemes on the Computational Complexity of Genetic Algorithms in Function Optimization. In: H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, (eds.), Proceedings of The Fourth International Conference on Parallel Problem Solving from Nature (PPSN IV), 227–235, 1996. Springer-Verlag, Berlin.
H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley and Sons, NY, 1995.
M. Srinivas and L. Patnaik. Genetic Algorithms: A Survey. Computer. 27(6):17–26, 1994.
D. Thierens and D.E. Goldberg. Convergence Models of Genetic Algorithm Selection Schemes. In: Y. Davidor, H.P. Schwefel, and R. Männer (eds.), Proceedings of Parallel Problem Solving from Nature 3, 119–129, 1994. Springer-Verlag, Berlin.
M.D. Vose. Generalizing the notion of schema in genetic algorithms. Artificial Intelligence. 50:385–396, 1991.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salomon, R. (1998). Short notes on the schema theorem and the building block hypothesis in genetic algorithms. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040765
Download citation
DOI: https://doi.org/10.1007/BFb0040765
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64891-8
Online ISBN: 978-3-540-68515-9
eBook Packages: Springer Book Archive