A simple analysis of the blokh-Zyablov decoding algorithm | SpringerLink
Skip to main content

A simple analysis of the blokh-Zyablov decoding algorithm

  • Conference paper
  • First Online:
Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra (AAECC 1986)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 307))

  • 170 Accesses

Abstract

Blokh-Zyablov [1] devised a decoding algorithm for concatenated codes, which is capable of maximum random error correction. The algorithm was further developed by Zinoviev-Zyablov [2], [3], who modified it so that it could also correct many bursts of errors, without sacrificing the random error correcting capability. Unfortunately hitherto available analyses of the algorithm are rather involved — a fact which might have prevented the algorithm from achieving the attention it deserves. We offer here a much simplified treatment, which we hope will help to popularize the algorithm. It should be pointed out that the basic ideas can be traced back to Forney [4], [5] (generalized minimum distance decoding).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.L. Blokh and V.V. Zyablov, "Generalized concatenated codes", (in Russian), Svyaz', Moscow, 1976.

    Google Scholar 

  2. V.A. Zinoviev and V.V. Zyablov, "Decoding of non-linear generalized concatenated codes", Probl. Peredachi Inf., Vol. 14, No. 2, pp. 46–52, 1978.

    Google Scholar 

  3. V.A. Zinoviev and V.V. Zyablov, "Correction of error bursts and independent errors by generalized concatenated codes", Probl. Peredachi Inf., Vol. 15, No. 2, pp. 58–70, 1979.

    Google Scholar 

  4. G.D. Forney Jr., "Generalized minimum distane decoding", IEEE Trans. Inf. Theory, IT-12, pp. 125–131, 1966.

    Google Scholar 

  5. G.D. Forney Jr., "Concatenated codes", MIT Research Monograph No. 37, The MIT Press, Cambridge, Mass. 1966.

    Google Scholar 

  6. R.E. Blahut, "Theory and practice of error control codes", Addison Wesley 1983.

    Google Scholar 

  7. I. Hsu, I.S. Reed, T.K. Truong, K. Wang, C. Yeh, and L.J. Deutsch, "The VLSI-implementation of a Reed-Solomon encoder using Berlekamps bi-serial multiplier algorithm", IEEE Trans. on Computers, Vol. C-33, No. 10, pp. 906–911, 1984.

    Google Scholar 

  8. H.M. Shao, T.K. Truong, L.J. Deutsch, J.H. Yuen and I.S. Reed, "A VLSI design of a pipeline Reed-Solomon Decoder", IEEE Trans on Computers, Vol. C-34, No. 5, pp. 393–403, 1985.

    Google Scholar 

  9. B.B. Zyablov and E.L. Blokh, "Linear concatenated codes", (in Russian), Moscow 1982.

    Google Scholar 

  10. S.M. Reddy and J.P. Robinson, "Random error and burst correction by iterated codes", IEEE Trans. on Inform. Theory, IT-18, No. 1, pp. 182–185, 1972.

    Google Scholar 

  11. E.J. Weldon, "Decoding binary block codes on Q-ary output channels", IEEE Trans. on Inform. Theory, IT-17, No. 6, pp. 713–718, 1971.

    Google Scholar 

  12. J. Justesen, "A class of constructive asymptotically good algebraic codes", IEEE Trans. on Inform. Theory, IT-18, No. 5, pp. 652–656, 1972.

    Google Scholar 

  13. J.H. van Lint, "Error correction for concatenated codes", Nat. Lab. Report 1987 (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Beth Michael Clausen

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ericson, T. (1988). A simple analysis of the blokh-Zyablov decoding algorithm. In: Beth, T., Clausen, M. (eds) Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra. AAECC 1986. Lecture Notes in Computer Science, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039178

Download citation

  • DOI: https://doi.org/10.1007/BFb0039178

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19200-8

  • Online ISBN: 978-3-540-39133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics