Abstract
In order to study composition of morphisms and inverse morphisms, we introduce starry transductions t which are, by definition, those verifying: ε ∃ t(ε) and for all words u, v, t(u) t(v) ⊂t(uv). We show that each starry transduction can be factored with two morphisms and two inverse morphisms. Then, we study some particular starry transductions. So, we prove that each rational substitution can be factored into a single morphism and two inverse morphisms and that each decreasing starry transduction can be factored into a single inverse morphism and two morphisms. That permits us to give an answer to a question posed in [5], by showing that for every rational language R, there exist morphisms h1, h2, h3, g1, g2, g3, such that R=h −13 o h2 o h −11 (a)=g3 o g −12 o g1(a*b).
Preview
Unable to display preview. Download preview PDF.
References
J. BERSTEL, “Transductions and context-free language”, Teubner Verlag, Stuttgart, 1979.
L. BOASSON and M. NIVAT, “Sur diverses familles de langages fermées par transduction rationnelle”, Acta Informatica 2 (1973), pp.180–188.
R.V. BOOK, “Comparing complexity classes”, J. Comput. System Sc. 9 (1974), pp. 213–229.
N. CHOMSKY and M.P. SCHÜTZENBERGER, “The algebraic theory of context-free language”, in Computer programming and formal systems (P. Braffort and D. Hirschberg Eds.), Amsterdam, North-Holland 1963, pp. 118–161.
K. CULIK II, F.E. FICH and A. SALOMAA, “A homomorphic characterization of regular languages”, Discrete Appl. Math. 4 (1982), pp.149–152.
K. CULIK II, and H. MAURER, “On simple representation of language families”, RAIRO Theor. Informatics 13 (1979), pp. 241–250.
S. GINSBURG, J. GOLDSTINE and S. GREIBACH, “Some uniformly erasable families of languages, Theoretical Computer Science 2 (1976), pp. 29–44.
S. GREIBACH, “The hardest CF language”, SIAM J. Comput. 2 (1973), pp. 304–310
J. KARHUMÄKI and M. LINNA, “A note on morphic characterization of languages”, Discrete Appl. Math. 5 (1983), pp. 243–246.
M. LATTEUX, “A propos du lemme de substitution”, Theoretical Computer Science 14 (1981), pp. 119–123.
M. LATTEUX and J. LEGUY, “On the usefulness of bifaithful rational cones”, Publication I.T. 40–82, Lille, 1982.
J. LEGUY, “Traniductions rationnelles décroissantes”, RAIRO Theor. Informatics 5 (1981), pp. 141–148.
M. NIVAT, “Transductions dei langages de Chomsky”, Ann. Inst. Fourier 18 (1968), pp. 339–455.
A. SALOMAA, “Formal languages”, Academic Press, New-York, 1973.
P. TURAKAINEN, “A homomorphic characterization of principal semi AFLs without using intersection with regular sets”, 1982, Technical report, University of Oulu.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1983 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Latteux, M., Leguy, J. (1983). On the composition of morphisms and inverse morphisms. In: Diaz, J. (eds) Automata, Languages and Programming. ICALP 1983. Lecture Notes in Computer Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036926
Download citation
DOI: https://doi.org/10.1007/BFb0036926
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-12317-0
Online ISBN: 978-3-540-40038-7
eBook Packages: Springer Book Archive