On the composition of morphisms and inverse morphisms | SpringerLink
Skip to main content

On the composition of morphisms and inverse morphisms

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1983)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 154))

Included in the following conference series:

  • 144 Accesses

Abstract

In order to study composition of morphisms and inverse morphisms, we introduce starry transductions t which are, by definition, those verifying: ε ∃ t(ε) and for all words u, v, t(u) t(v) ⊂t(uv). We show that each starry transduction can be factored with two morphisms and two inverse morphisms. Then, we study some particular starry transductions. So, we prove that each rational substitution can be factored into a single morphism and two inverse morphisms and that each decreasing starry transduction can be factored into a single inverse morphism and two morphisms. That permits us to give an answer to a question posed in [5], by showing that for every rational language R, there exist morphisms h1, h2, h3, g1, g2, g3, such that R=h −13 o h2 o h −11 (a)=g3 o g −12 o g1(a*b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. BERSTEL, “Transductions and context-free language”, Teubner Verlag, Stuttgart, 1979.

    Google Scholar 

  2. L. BOASSON and M. NIVAT, “Sur diverses familles de langages fermées par transduction rationnelle”, Acta Informatica 2 (1973), pp.180–188.

    Google Scholar 

  3. R.V. BOOK, “Comparing complexity classes”, J. Comput. System Sc. 9 (1974), pp. 213–229.

    Google Scholar 

  4. N. CHOMSKY and M.P. SCHÜTZENBERGER, “The algebraic theory of context-free language”, in Computer programming and formal systems (P. Braffort and D. Hirschberg Eds.), Amsterdam, North-Holland 1963, pp. 118–161.

    Google Scholar 

  5. K. CULIK II, F.E. FICH and A. SALOMAA, “A homomorphic characterization of regular languages”, Discrete Appl. Math. 4 (1982), pp.149–152.

    Google Scholar 

  6. K. CULIK II, and H. MAURER, “On simple representation of language families”, RAIRO Theor. Informatics 13 (1979), pp. 241–250.

    Google Scholar 

  7. S. GINSBURG, J. GOLDSTINE and S. GREIBACH, “Some uniformly erasable families of languages, Theoretical Computer Science 2 (1976), pp. 29–44.

    Google Scholar 

  8. S. GREIBACH, “The hardest CF language”, SIAM J. Comput. 2 (1973), pp. 304–310

    Google Scholar 

  9. J. KARHUMÄKI and M. LINNA, “A note on morphic characterization of languages”, Discrete Appl. Math. 5 (1983), pp. 243–246.

    Google Scholar 

  10. M. LATTEUX, “A propos du lemme de substitution”, Theoretical Computer Science 14 (1981), pp. 119–123.

    Google Scholar 

  11. M. LATTEUX and J. LEGUY, “On the usefulness of bifaithful rational cones”, Publication I.T. 40–82, Lille, 1982.

    Google Scholar 

  12. J. LEGUY, “Traniductions rationnelles décroissantes”, RAIRO Theor. Informatics 5 (1981), pp. 141–148.

    Google Scholar 

  13. M. NIVAT, “Transductions dei langages de Chomsky”, Ann. Inst. Fourier 18 (1968), pp. 339–455.

    Google Scholar 

  14. A. SALOMAA, “Formal languages”, Academic Press, New-York, 1973.

    Google Scholar 

  15. P. TURAKAINEN, “A homomorphic characterization of principal semi AFLs without using intersection with regular sets”, 1982, Technical report, University of Oulu.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josep Diaz

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latteux, M., Leguy, J. (1983). On the composition of morphisms and inverse morphisms. In: Diaz, J. (eds) Automata, Languages and Programming. ICALP 1983. Lecture Notes in Computer Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036926

Download citation

  • DOI: https://doi.org/10.1007/BFb0036926

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12317-0

  • Online ISBN: 978-3-540-40038-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics