Abstract
Begining with the concepts and techniques of Artificial Vision and Systems Theory, the main goal of this paper is the analysis and synthesis of a formal general model to be the base for the design of visual automatic inspection systems and its implementation and testing in a real case of fault detection using digital images acquired through a camera-computer chain.
Preview
Unable to display preview. Download preview PDF.
References
Pichler, F. Computer Aided System Theory: A Framework for Interactive Method Banks. Cybernetics and Systems. 88. pp 731–736.The Netherlands 1988.
Candela, S., Muñoz, J., Alayon, F., Garcia C. Un Sistema de Visión para la Detección de Defectos.Actas de Panel'92 p 240–247. Las Palmas de G. Canaria. 1992. Universidad de Las Palmas de Gran Canaria
Unser, M., Coulon, F. Detection of Defects by Texture Monitoring in Automatic Visual Inspection. Proceedings of The 2md International Conference on Robot Vision and Sensory Controls November 1982. Stuttgart, Germany.
Muñoz Blanco, J. A. “Jerarquización de estructuras de nivel bajo y medio para reconocimiento visual. Aplicaciones a texturas y formas. Tesis Doctoral. 1987.
Wang, L.; and D. He. “Texture Classification Using Texture Spectrum”. Pattern Recognition”. 1990.
Amelia C. Fong, Lionel M. Ni, Kwan Y. Wong “Fast Discrimination Between Homogeneous and Texture Regions”.
García, C. Estructuras de Representación Visual Múltiple. Aplicación a la Detección de Variaciones Locales en Texturas y a la Inspección Visual. Tesis Doctoral. 1995.
Muñoz, J., Garcia, C., Alayon, F., Candela, S. Systems Concepts for Visual Texture Change Detection Strategy. Lecture Notes in Computer Science 763. pp 358–366. 1994.
Candela, S., Garcia, C., Muñoz, J., Alayon, F. Facilitatory Process for Contrast Detection. Lecture Notes in Computer Science 720. pp 627–630. 1993.
Borghesi, V. Cantoni, M. Diani.“An Industrial Application of Texture Analysis”.
Conners, R. Identifying and Locating Surface Defects in Wood: Part of an Automated Lumber Processing System. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.Pami-5, No 6, November 1983.
Ade, F. “Application of principal component analisys to the inspection of industrial goods”. Applications of Digital Image Processing, vol 397, pag 216–223, SPIE 1983.
Siew, H., Hodgson, R. “Texture Measures for Carpet Wear Assesment”. Transactions on Pattern Analisys and Machine Intelligence. vol 10,n1.IEEE Computer Society Press. 1988.
Neubauer, C. “Segmentation of Defects in Textile Fabric”. International Conference on Pattern Recognition Proceeding, pp 688–691. IEEE Computer Society Press. 1992.
Haralick, R. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, vol 67, no 5, May 1979.
Calvin C. Gotlieb, Helbert E. Kreyszig.“Texture Descriptors Based on Co-Ocurrences Matrices”. Computer Vision, Graphics, and Image Processing. Academic Press, Inc. 1990.
Rao, K., Ahmed, N. Orthogonal Transforms for Digital Signal Processing. IEEE International Conference on Acustics, Speech and Signal Processing P 136–40, 1976.
D'Astous and M. E. Jernigan. “Texture Discrimination Based On Detailed Measures Of Power Spectrum”. IEEE. 1984.
Eklundh, J. O. “On The Use of Fourier Features for Texture Discrimination”. Computer Graphics and Image Processing. 1979.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Candela, S., Garcia, C., Alayon, F., Muñoz, J. (1996). Cast system approach for visual inspection. In: Pichler, F., Díaz, R.M., Albrecht, R. (eds) Computer Aided Systems Theory — EUROCAST '95. EUROCAST 1995. Lecture Notes in Computer Science, vol 1030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034781
Download citation
DOI: https://doi.org/10.1007/BFb0034781
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60748-9
Online ISBN: 978-3-540-49358-7
eBook Packages: Springer Book Archive