From dynamic algebras to test algebras | SpringerLink
Skip to main content

From dynamic algebras to test algebras

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1984 (MFCS 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 176))

Abstract

We generalize some results, known for dynamic algebras, to test algebras. Main results: Every free algebra in the equational class generated by separable test algebras is isomorphic to a Kripke test structure. Consequently, equational classes generated by separable test algebras and by Kripke test structures coincide. In contrary to dynamic algebras, free separable test algebras over finitely many generators do not exist. Epimorphisms in the equational class generated by separable dynamic or test algebras are shown not to be necessarily surjective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka, H. and Németi, I.: Every free algebra in the variety generated by the separable dynamic algebras is separable and representable, to appear in Theoretical Comp. Sci.

    Google Scholar 

  2. Fischer, M.J. and Lander, R.E.: Propositional modal logic of programs, Proc. 9th Ann. ACM Symp. on Theory of Computing, 286–294, Boulder, Col., May 1977.

    Google Scholar 

  3. Kozen, D.: A representation theorem for models of *-free PDL, IBM Researche, July 1979.

    Google Scholar 

  4. Kozen, D.: Dynamic algebras, in [10].

    Google Scholar 

  5. Kozen, D.: On induction vs. *-continuiuty, IBM Research, Sept. 1980.

    Google Scholar 

  6. Kozen, D.: On the duality of dynamic algebras and Kripke models, IBM Research, May 1979.

    Google Scholar 

  7. Kozen, D.: On the representation of dynamic algebras, IBM Research Oct. 1979.

    Google Scholar 

  8. Kozen, D.: On the representation of dynamic algebras II, IBM Research, May 1980.

    Google Scholar 

  9. Németi, I.: Dynamic algebras of programs, Proc. FCT '81, Lecture notes Comp. Sci. 117, Springer 1981, 281–291.

    Google Scholar 

  10. Parikh, R.: Propositional dynamic logic of programs: a survey, Laboratory for Comp. Sci., Mass.Inst. of Technology, Jan.1981.

    Google Scholar 

  11. Pratt, V.R.: Dynamic algebras: examples, constructions, applications, Laboratory for Comp. Sci., Mass. Inst. of Technology, July 1979.

    Google Scholar 

  12. iPratt, V.R.: Dynamic algebras and the nature of induction, Laboratory for Comp. Sci., Mass. Inst. of technology, March 1980.

    Google Scholar 

  13. Reiterman, J. and Trnková, V.: Dynamic algebras which are not Kripke structures, Proc. MFCS 1980.

    Google Scholar 

  14. Reiterman, J. and Trnková, V.: On representation of dynamic algebras with reversion, Proc. MFCS 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. P. Chytil V. Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reiterman, J., Trnková, V. (1984). From dynamic algebras to test algebras. In: Chytil, M.P., Koubek, V. (eds) Mathematical Foundations of Computer Science 1984. MFCS 1984. Lecture Notes in Computer Science, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030332

Download citation

  • DOI: https://doi.org/10.1007/BFb0030332

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13372-8

  • Online ISBN: 978-3-540-38929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics