Complexity of quantifier elimination in the theory of algebraically closed fields | SpringerLink
Skip to main content

Complexity of quantifier elimination in the theory of algebraically closed fields

  • Invited Lectures
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1984 (MFCS 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 176))

Abstract

An algorithm is described producing for each formula of the first order theory of algebraically closed fields an equivalent free of quantifiers one. Denote by N a number of polynomials occuring in the formula, by d an upper bound on the degrees of polynomials, by n a number of variables, by a a number of quantifier alternations (in the prefix form). Then the algorithm works within the polynomial in the formula's size and in (Nd)n (2a+2) time. Up to now a bound (Nd)n o(n) was known ([5], [7], [15]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chistov A.L., Grigor'ev D.Yu. Polynomial-time factoring of the multivariable polynomials over a global field. — LOMI preprint E-5-82, Leningrad, 1982.

    Google Scholar 

  2. Chistov A.L., Grigor'ev D.Yu. Subexponential-time solving systems of algebraic equations. I. — LOMI preprint E-9-83, Leningrad, 1983.

    Google Scholar 

  3. Chistov A.L., Grigor'ev D.Yu. Subexponential-time solving systems of algebraic equations. II. — LOMI preprint E-10-83, Leningrad, 1983.

    Google Scholar 

  4. Chistov A.L., Grigor'ev D.Yu. Polynomial-time factoring of polynomials and subexponential-time solving systems and quantifier elimination. — Notes of Scientific seminars of LOMI, Leningrad, 1984, vol. 137.

    Google Scholar 

  5. Collins G.E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. — Lect.Notes Comput.Sci., 1975, vol.33, p. 134–183.

    Google Scholar 

  6. Grigor'ev D.Yu. Multiplicative complexity of a bilinear form over a commutative ring. — Lect.Notes Comp.Sci., 1981, vol.118, p.281–286.

    Google Scholar 

  7. Heintz J. Definability and fast quantifier elimination in algebraically closed fields. — Prepr.Univ.Frankfurt, West Germany, December, 1981.

    Google Scholar 

  8. Kaltofen E. A polynomial reduction from multivariate to bivariate integral polynomial factorization. — Proc. 14-th ACM Symp.Th. Comput., May, N.Y., 1982, p.261–266.

    Google Scholar 

  9. Kaltofen E. A polynomial-time reduction from bivariate to univariate integral polynomial factorization. — Proc.23-rd IEEE Symp.Found Comp.Sci., October, N.Y., 1982, p.57–64.

    Google Scholar 

  10. Lazard D. Algébre linéaire sur k[X 1,...,X n] et élimination. — Bull.Soc.Math.France, 1977, vol.105, p.165–190.

    Google Scholar 

  11. Lazard D. Résolutions des systèmes d'équations algébriques. — Theor Comput.Sci., 1981, vol.15, p.77–110.

    Google Scholar 

  12. Lenstra A.K., Lenstra H.W., Lovasz L. Factoring polynomials with rational coefficients. — Math.Ann., 1982, vol.261, p.515–534.

    Google Scholar 

  13. Lenstra A.K. Factoring multivariate polynomials over finite fields. — Preprint Math.Centrum Amsterdam, IW 221/83, Februari, 1983.

    Google Scholar 

  14. Shafarevich I.R. Basic algebraic geometry. — Springer-Verlag, 1974.

    Google Scholar 

  15. Wüthrich H.R. Ein Entscheidungsverfahren für die Theorie der reellabgeschlossenen Körper. — Lect.Notes Comput.Sci., 1976, vol.43, p.138–162.

    Google Scholar 

  16. Zariski O., Samuel P. Commutative algebra, vol.1, 2. — van Nostrand, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. P. Chytil V. Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chistov, A.L., Grigor'ev, D.Y. (1984). Complexity of quantifier elimination in the theory of algebraically closed fields. In: Chytil, M.P., Koubek, V. (eds) Mathematical Foundations of Computer Science 1984. MFCS 1984. Lecture Notes in Computer Science, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030287

Download citation

  • DOI: https://doi.org/10.1007/BFb0030287

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13372-8

  • Online ISBN: 978-3-540-38929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics