PARASPAR: Parallel solvers for sparse linear algebraic systems | SpringerLink
Skip to main content

PARASPAR: Parallel solvers for sparse linear algebraic systems

  • Conference paper
  • First Online:
Parallel Scientific Computing (PARA 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 879))

Included in the following conference series:

  • 163 Accesses

Abstract

PARASPAR is a package for the solution of linear algebraic systems whose coefficient matrices are large and sparse. Linear least squares problems can also be treated by PARASPAR (using the method of augmentation). Both direct methods and preconditioned iterative procedures are used. The direct methods are based on the classical Gaussian elimination with three different pivotal strategies. The iterative methods used are a modified ORTHOMIN algorithm, CGS, BI-CGSTAB and TFQMR. The preconditioners for all iterative algorithms are calculated by using an approximate LU factorization, which is obtained by dropping small non-zero elements during the Gaussian elimination. If the preconditioners are not sufficiently accurate (and, therefore, the iterative process is either divergent or the convergence is very slow), then an attempt to increase the accuracy of the preconditioner can automatically be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. L. Alvarado, A. Pothen and R. Schreiber: “Highly parallel sparse triangular solution”. Report No. CS-92-09, Department of Computer Science, The Pennsylvania State University, University Park, PA 16802, USA, 1992.

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen: “LAPACK: Users' Guide” SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 1992.

    Google Scholar 

  3. E. Anderson and Y. Saad: “Preconditioned conjugate gradient methods for general sparse matrices on shared memory machines”. In: “PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING” (G. Rodrigue, ed.), pp. 88–92. Society for Industrial and Applied Mathematics, Philadelphia, 1989.

    Google Scholar 

  4. M. Arioli, I. S. Duff and D. Ruiz: “Stopping criteria for iterative solvers”. Report No. RAL-91-057. Rutherford Appleton Laboratory, Oxon OX11 0QX, ENGLAND, 1991.

    Google Scholar 

  5. T. A. Davis and P.-C. Yew: “A nondeterministic parallel algorithm for general unsymmetric sparse LU factorization”. SIAM J. Matrix. Anal. Appl., 3 (1990), 383–402.

    Google Scholar 

  6. D. S. Dodson and J. G. Lewis: “Proposed sparse extensions to the basic linear algebra subprograms”. ACM SIGNUM Newsletter, 20 (1985), 22–25.

    Google Scholar 

  7. J. J. Dongarra and S. C. Eisenstat: “Squeezing the most out of an algorithm in CRAY FORTRAN”. ACM Trans. Math. Software, 10 (1984), 219–230.

    Google Scholar 

  8. J. J. Dongarra, F. G. Gustavson and A. Karp: “Implementing linear algebra algorithms for dense matrices on a vector pipeline machine”. SIAM Rev., 26 (1984), 91–112.

    Google Scholar 

  9. I. S. Duff and J. K. Reid: “MA48: a FORTRAN code for direct solution for sparse unsymmetric linear systems of equations equations”. Report No. RAL-93-072 Central Computing Department, Rutherford Appleton Laboratory. Oxon OX11 0QX, ENGLAND, 1993.

    Google Scholar 

  10. I. S. Duff, R. G. Grimes and J. C. Lewis: “Sparse matrix test problems”. ACM Trans. Math. Software, 15 (1989), 1–14.

    Google Scholar 

  11. S. C. Eisenstat, H. C. Elman and M. H. Schultz: “Variational methods for nonsymmetric systems of linear equations”. SIAM J. Numer. Anal., 20 (1983), 345–357.

    Google Scholar 

  12. S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman: “The YALE sparse matrix package: The symmetric codes”. Internat. J. Numer. Meth. Engng., 18(1982), 1145–1151.

    Google Scholar 

  13. R. W. Freund: “A transpose free quasi minimal resudual algorithm for non-hermitian linear systems”. SIAM J. Sci. Comput., 14 (1993), 470–482.

    Google Scholar 

  14. K. A. Gallivan, P. C. Hansen, Tz. Ostromski and Z. Zlatev: “A locally optimized reordering algorithm and its application to a parallel sparse linear system solver”. Report UNIC-93-07. The Danish Computer Centre for Research and Education, Technical University of Denmark, Bldg. 305. DK-2800 Lyngby, DENMARK, 1993.

    Google Scholar 

  15. K. A. Gallivan, A. H. Sameh and Z. Zlatev: “Solving general sparse linear systems using conjugate gradient-type methods”. In: “PROCEEDINGS OF THE 1990 INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, June 11–15 1990, Amsterdam, The Netherlands”. ACM Press, New York, 1990.

    Google Scholar 

  16. K. A. Gallivan, A. H. Sameh and Z. Zlatev: “A parallel hybrid sparse linear system solver”. Computing Systems in Engineering, 1 (1990), 183–195.

    Google Scholar 

  17. J. A. George and J. W. Liu: “Computer solution of large sparse positive definite systems”. Prentice-Hall, Englewood Cliffs, N. J., 1981.

    Google Scholar 

  18. J. A. George and E. Ng: “Symbolic factorization for sparse Gaussian elimintion with partial pivoting”. SIAM J. Sci. Statist. Comput., 8(1987), 877–898.

    Google Scholar 

  19. J. R. Gilbert and T. Peierls: “Sparse partial pivoting in time proportional to arithmetic operations”. SIAM J. Sci. Statist. Comput., 9(1988), 862–874.

    Google Scholar 

  20. Y. Saad and M. H. Schultz: “CMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”. SIAM J. Sci. Statist. Comput., 7(1986), 856–869.

    Google Scholar 

  21. A. van der Sluis and H. A. van der Vorst: “The rate of convergence of conjugate gradients”. Numer. Math., 48(1986), 543–560.

    Google Scholar 

  22. A. van der Sluis and H. A. van der Vorst: “The convergence behaviour of Ritz values in the presence of close eigenvalues”. Report No 86-08. Department of Mathematics and Informatics, Delft University of Technology, Julianalaan 132, 2628 BL Delft, Netherlands, 1986.

    Google Scholar 

  23. P. Sonneveld: “CGS, a fast Lanzos-type solver for nonsymmetric linear systems”. SIAM J. Sci. Statist. Comput., 10 (1989), 36–52.

    Google Scholar 

  24. A. F. van der Stappen, R. H. Bisseling and J. G. G. van der Vorst: “Parallel sparse LU decomposition on a mesh network of transputers”. SIAM J. Matrix Anal. Appl., 14(1993), 853–879.

    Google Scholar 

  25. P. K. W. Vinsome: “Orthomin, an iterative method for solving sparse sets of simultaneous linear equations”. In: “PROCEEDINGS OF THE FOURTH SYMPOSIUM ON RESERVOIR SIMULATION”, pp. 140–159. Society of Petroleum Engineers of AIME, 1076.

    Google Scholar 

  26. H. A. van der Vorst: “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”. SIAM J. Sci. Statist. Comput., 13(1992), 631–644.

    Google Scholar 

  27. Z. Zlatev: “On some pivotal strategies in Gaussian elimination by sparse technique”. SIAM J. Numer. Anal., 17(1980), 18–30.

    Google Scholar 

  28. Z. Zlatev: “Use of iterative refinement in the solution of sparse linear systems”. SIAM J. Numer. Anal., 19(1982), 381–399.

    Google Scholar 

  29. Z. Zlatev: “Computational methods for general sparse matrices”. Kluwer Academic Publishers, Dordrecht-Toron to-London, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zlatev, Z., Waśniewski, J. (1994). PARASPAR: Parallel solvers for sparse linear algebraic systems. In: Dongarra, J., Waśniewski, J. (eds) Parallel Scientific Computing. PARA 1994. Lecture Notes in Computer Science, vol 879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030181

Download citation

  • DOI: https://doi.org/10.1007/BFb0030181

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58712-5

  • Online ISBN: 978-3-540-49050-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics