Rational ω-transductions | SpringerLink
Skip to main content

Rational ω-transductions

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1990 (MFCS 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 452))

  • 777 Accesses

Abstract

The rational ω-transductions (defined by F. Gire as bimorphisms) are particular transductions for infinite words. In this paper we give characterizations of these transductions. On the one hand they coincide with the compositions of non erasing and inverse non erasing morphisms, and only three morphisms are necessary. On the other hand they can be defined from bifaithful rational transductions using a limit operation we call adherence.

This work is supported by the PRC Mathématiques et Informatique, and by the EBRA project ASMICS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Beauquier and D. Perrin, "Codeterministic automata on infinite words", Inform. Process. Letters 20 (1985), pp. 95–98.

    Google Scholar 

  2. J. Berstel, "Transductions and context-free languages", Teubner 1979, Stuttgart.

    Google Scholar 

  3. L. Boasson and M. Nivat, "Sur diverses familles de languages fermées par transduction rationnelle", Acta Informatica 2 (1973), PP. 180–188.

    Google Scholar 

  4. L. Boasson and M. Nivat, "Adherences of languages", J. Comput. Syst. Sciences 20 (1980), pp. 285–309.

    Google Scholar 

  5. J.R. Büchi, "On a decision method in restricted second order arithmetic", in Proc. 1960 Int.Congr. for Logic, Stanford Univ. Press, pp. 1–11.

    Google Scholar 

  6. K. Culik II and J.K. Pachl, "Equivalence problems for mappings on infinite strings", Inform. and Control 49 (1981), pp. 52–53.

    Google Scholar 

  7. S. Eilenberg, "Automata, Languages and Machines", vol. A, Academic Press, New York, 1974.

    Google Scholar 

  8. C Frougny, "Systèmes de numération linéaires et automates finis", Thèse d'Etat, Paris VII, 1989.

    Google Scholar 

  9. F. Gire, "Relations rationnelles infinitaires", Thèse de 3ème cycle, Paris VII, 1981.

    Google Scholar 

  10. F. Gire, "Une extension aux mots infinis de la notion de transduction rationnelle", 6th GI conf. (1983), Lecture Notes in Comput. Sci. 145, pp. 123–139.

    Google Scholar 

  11. F. Gire and M. Nivat, "Relations rationnelles infinitaires", Calcolo 21 (1984), pp. 91–125.

    Google Scholar 

  12. J. Karhumäki and M. Linna, "A note on morphic characterization of languages", Discrete Appl. Math. 5 (1983), pp. 243–246.

    Google Scholar 

  13. L.H. Landweber, "Decision problems for ω-automata", Math. Syst. Theory 3 (1969), pp. 376–384.

    Google Scholar 

  14. M. Latteux and J. Leguy, "On the composition of morphisms and inverse morphisms", Lecture Notes Comput. Sciences 154 (1983), pp. 420–432.

    Google Scholar 

  15. M. Latteux and E. Timmerman, "Two characterizations of rational adherences", T. C. S. 46 (1986), pp. 101–106.

    Google Scholar 

  16. M. Latteux and E. Timmerman, "Bifaithful starry transductions", Inform. Process. Letters 28 (1988), PP. 1–4.

    Google Scholar 

  17. M. Latteux and E. Timmerman, "Rational ω-transductions", technical report Univ. Lille 1, LIFL no IT 176 (1990).

    Google Scholar 

  18. R. McNaughton, "Testing and generating infinite sequences by a finite automaton", Inform. and Control 9 (1966), pp. 521–530.

    Google Scholar 

  19. L. Staiger, "Sequential mappings of ω-languages", RAIRO Inf. Theo. et Applic. 21 (1987), pp. 147–173.

    Google Scholar 

  20. L. Staiger, "Research in the theory of ω-languages", J. Inf. Process. Cybern. EIK 23 (1987) pp. 415–439.

    Google Scholar 

  21. M. Takahashi and H. Yamasaki, "A note on ω-regular languages", T. C. S. 23 (1983), pp. 217–225.

    Google Scholar 

  22. E. Timmerman, "The three subfamilies of rational ω-languages closed under ω-transductions", T. C. S. to appear.

    Google Scholar 

  23. S. Tison, "Mots infinis et processus. Objets infinitaires et topologie", Thèse de 3ème cycle, Lille 1, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Branislav Rovan

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latteux, M., Timmerman, E. (1990). Rational ω-transductions. In: Rovan, B. (eds) Mathematical Foundations of Computer Science 1990. MFCS 1990. Lecture Notes in Computer Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029636

Download citation

  • DOI: https://doi.org/10.1007/BFb0029636

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52953-8

  • Online ISBN: 978-3-540-47185-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics