Abstract
The rational ω-transductions (defined by F. Gire as bimorphisms) are particular transductions for infinite words. In this paper we give characterizations of these transductions. On the one hand they coincide with the compositions of non erasing and inverse non erasing morphisms, and only three morphisms are necessary. On the other hand they can be defined from bifaithful rational transductions using a limit operation we call adherence.
This work is supported by the PRC Mathématiques et Informatique, and by the EBRA project ASMICS.
Preview
Unable to display preview. Download preview PDF.
References
D. Beauquier and D. Perrin, "Codeterministic automata on infinite words", Inform. Process. Letters 20 (1985), pp. 95–98.
J. Berstel, "Transductions and context-free languages", Teubner 1979, Stuttgart.
L. Boasson and M. Nivat, "Sur diverses familles de languages fermées par transduction rationnelle", Acta Informatica 2 (1973), PP. 180–188.
L. Boasson and M. Nivat, "Adherences of languages", J. Comput. Syst. Sciences 20 (1980), pp. 285–309.
J.R. Büchi, "On a decision method in restricted second order arithmetic", in Proc. 1960 Int.Congr. for Logic, Stanford Univ. Press, pp. 1–11.
K. Culik II and J.K. Pachl, "Equivalence problems for mappings on infinite strings", Inform. and Control 49 (1981), pp. 52–53.
S. Eilenberg, "Automata, Languages and Machines", vol. A, Academic Press, New York, 1974.
C Frougny, "Systèmes de numération linéaires et automates finis", Thèse d'Etat, Paris VII, 1989.
F. Gire, "Relations rationnelles infinitaires", Thèse de 3ème cycle, Paris VII, 1981.
F. Gire, "Une extension aux mots infinis de la notion de transduction rationnelle", 6th GI conf. (1983), Lecture Notes in Comput. Sci. 145, pp. 123–139.
F. Gire and M. Nivat, "Relations rationnelles infinitaires", Calcolo 21 (1984), pp. 91–125.
J. Karhumäki and M. Linna, "A note on morphic characterization of languages", Discrete Appl. Math. 5 (1983), pp. 243–246.
L.H. Landweber, "Decision problems for ω-automata", Math. Syst. Theory 3 (1969), pp. 376–384.
M. Latteux and J. Leguy, "On the composition of morphisms and inverse morphisms", Lecture Notes Comput. Sciences 154 (1983), pp. 420–432.
M. Latteux and E. Timmerman, "Two characterizations of rational adherences", T. C. S. 46 (1986), pp. 101–106.
M. Latteux and E. Timmerman, "Bifaithful starry transductions", Inform. Process. Letters 28 (1988), PP. 1–4.
M. Latteux and E. Timmerman, "Rational ω-transductions", technical report Univ. Lille 1, LIFL no IT 176 (1990).
R. McNaughton, "Testing and generating infinite sequences by a finite automaton", Inform. and Control 9 (1966), pp. 521–530.
L. Staiger, "Sequential mappings of ω-languages", RAIRO Inf. Theo. et Applic. 21 (1987), pp. 147–173.
L. Staiger, "Research in the theory of ω-languages", J. Inf. Process. Cybern. EIK 23 (1987) pp. 415–439.
M. Takahashi and H. Yamasaki, "A note on ω-regular languages", T. C. S. 23 (1983), pp. 217–225.
E. Timmerman, "The three subfamilies of rational ω-languages closed under ω-transductions", T. C. S. to appear.
S. Tison, "Mots infinis et processus. Objets infinitaires et topologie", Thèse de 3ème cycle, Lille 1, 1983.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Latteux, M., Timmerman, E. (1990). Rational ω-transductions. In: Rovan, B. (eds) Mathematical Foundations of Computer Science 1990. MFCS 1990. Lecture Notes in Computer Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029636
Download citation
DOI: https://doi.org/10.1007/BFb0029636
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52953-8
Online ISBN: 978-3-540-47185-1
eBook Packages: Springer Book Archive